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A general method is used for describing reaction~tiffusion systems, namely van 
Kampen's "method of compounding moments," to study the spatial fluctuations 
in reaction-limited aggregation processes. The general formalism used here and 
in subsequent publications is developed. Then a particular model is considered 
that is of special interest, since it describes the occurrence of a phase transition 
(gelation). The corresponding rate constants for the reaction between two 
clusters of size i and size j are K o = ij (i, j = 1, 2,...). For the diffusion constants 
Dj of clusters of size j the following class of models is considered: Dj = D if 
1 <~j<~s and Dj=O i f j > s .  The cases s =  ov and s <  oo are studied separately. 
For the model s = oo the equal-time and the two-time correlation functions are 
calculated; this model breaks down at the gel point. The breakdown is charac- 
terized by a divergence of the density fluctuations, and is caused by the large 
mobility of large clusters. For all models with s < oo the density fluctuations 
remain finite at to, and the equal-time correlation functions in the pre- and in 
the post-gel stage are calculated. Many explicit and asymptotic results are given. 
From the exact solution the upper critical dimension in this gelling model is 
de=2. 

KEY WORDS: Spatial fluctuations; reaction~liffusion; aggregation; phase 
transition; gelation. 

1. I N T R O D U C T I O N  

R e a c t i o n - d i f f u s i o n  s y s t e m s  a re  p a r t i c u l a r l y  s u i t e d  as  a n  o b j e c t  of  s t u d y  if  

o n e  is i n t e r e s t e d  in  t he  t i m e  e v o l u t i o n  of  a v e r a g e s  ( c o n c e n t r a t i o n s )  a n d  

s p a t i a l  f l u c t u a t i o n s  a b o u t  t he se  ave rages .  T h e  r e a s o n  is t h a t  t he  m o b i l i t y  o f  

t he  r e a c t a n t s  p e r m i t s  a r a t h e r  t r a c t a b l e  s t o c h a s t i c  d e s c r i p t i o n  b a s e d  o n  

c l u s t e r  e x p a n s i o n s ,  (1'2) field o p e r a t o r  r e p r e s e n t a t i o n s ,  (3'4) o r  t he  m a s t e r  
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equation. (5-8) These methods can then be used to derive kinetic equations, 
from which the concentrations and correlation functions may be studied. 

In this paper I apply a general method for studying reaction-diffusion 
systems to a model describing the irreversible aggregation of clusters. The 
model under consideration is of special interest, since it describes the 
occurrence of a nonequilibrium phase transition (gelation), and the spatial 
fluctuations can be studied in detail both before and beyond the critical 
time to. 

The method for studying the fluctuations is the so-called "method of 
compounding moments" devised by van Kampen. (5) According to this 
method, the derivation of kinetic equations for the averages and for the 
fluctuations about these averages proceeds in two steps. In the first step 
one discretizes the space, i.e., one constructs the master equation for a cell 
model, where clusters react within each cell and jump between the cells. The 
kinetic equations are then derived directly from the master equation for this 
cell model. In the second step one transforms from the cell picture to a con- 
tinuous formulation, replacing the cell index by the spatial coordinates r. 
The advantages of this approach over the competing functional integral 
approach are expounded in ref. 5. However, in either approach it is 
assumed that the clusters travel over large distances (visit many cells) 
before they finally react. This reveals the basic limitation of the method: I 
restrict consideration to aggregation processes that are reaction limited. 

Before discussing the stochastic (master equation) approach, I 
consider first the macroscopic law for the average density of clusters of 
size k, or k-mers (k=  1, 2,...). The concentrations ck(r, t) of clusters of 
size k at the position r can be described by a set of deterministic, coupled 
reaction-diffusion equations of the form 

LCk(r, t )= l  2 Kijci(r, t) cj([, t)--Ck([ , t) ~,, K~jcj(r, t) 
c3t 2 i+j=k j= 1 

+ Dk Ack(r, t) (k = 1, 2,..) (1.1) 

where A = 632/63r 2 is the diffusion operator, and K,j and Dk are the reaction 
and diffusion constants, respectively. The various terms on the right in (1.1) 
represent, respectively, the formation of k-mers out of i- and j-mers (with 
i + j =  k), the loss of k-mers due to reactions with other polymers, and the 
change in ck(r, t) due to diffusion. Clearly, fluctuations are neglected in 
(1.1). Furthermore, in Eq. (1.1) only reactions between clusters of finite 
size (sol particles) are taken into account. If the system contains also an 
infinite cluster (or gel), then Eq. (1.1) has to be supplemented with a term 
describing the reactivity of the gel. 



Reaction-Limited Aggregation 223 

The master equation is constructed as follows. We start from the usual 
cell model, where the total volume V of the system is subdivided into cells 
of size v. The cells should be so small that they can be considered 
homogeneous. In this case the possible states of the system are fully charac- 
terized by the vector m = {m~;o}, where mk;~ gives the number of k-mers in 
cell 2. The probability P(m, t) that the system is in state m at time t 
changes due to two effects: the reactions, taking place within the cell, and 
the diffusion, which is modeled by jumps between the cells. Accordingly, 
the master equation for P(m, t) contains two terms: 

P(m, t) = TR(m, t) + To(m, t) (1.2) 

where T R and To represent the reaction and diffusion processes, respec- 
tively. 

The explicit form of the reaction part in (1.2) is given by 

TR(m, t )=  (2V) 1 ~ Ko[(mi)~ + 1 +6o) (mjz+  1) P(mR, t) 
i,j,  2 

- mi~(mj~ " - 6o) P(m, t)] (1.3a) 

where the state mR differs from m only in the numbers of i-mers, j-mers, 
and ( i+j)-mers  in cell 2: 

mR= ( .... m i ~ + l + 6 i j , . . . , m j ~ + l + 6  ~ ..... mi+j) -- 1,...) (1.3b) 

Thus TR contains a gain and a loss term, corresponding to the first and 
second terms on the right in (1.3a). The gain term represents jumps toward 
the state m from a state with an i- and a j-mer more in cell 2 and an 
( i+  j)-mer less. The loss term represents jumps out of state m. 

The contribution T o due to diffusion takes the form 

TD(m, t )=  ~ W (;)rl~ + l ) P ( m D ,  t ) - m l ~ P ( m , t ) ]  (1.4a) 
2,#,l 

where 
mo ~ ( .... m ~  + 1,..., m l , -  1,...) ( 1 . 4b )  

and w(~) gives the transition rate for jumps by/-mers from cell 2 to cell #. 
There is again a gain and a loss term, corresponding to the first and second 
terms on the right in (1.4a). In this case the gain term describes jumps 
toward m from states with an /-mer in cell 2 more and an/ -mer  in cell/~ 
less. 

The relation between the stochastic equation (1.2) and the deter- 
ministic equation (1.1) is that the average k-mer density (mk~}/v  reduces 
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to ck(r, t) if the diffusion (or jump) constants are large. In this case one can 
transform from the cell picture to a continuum formulation, replacing 
mk;jv by the density uk(r, t) and w(~ ~ by Dk. As a result, one finds that the 
average density (uk(r, t ) )  satisfies the macroscopic law (1.1). 

A conserved quantity in (1.2), and also in (1.1), is the total number of 
monomeric units (or total mass) in the system. Hence, if the total mass is 
denoted by M, one has the following restriction on the possible states m in 
(1.2): 

M 

E Z kmk~=M (1.5) 
z k = l  

By convention I choose the unit of volume such that M = V, i,e., I set the 
mass density equal to unity. Next consider Eq. (1.1). The situation here is 
complicated by the fact that for some choices of the rate constants Ko, 
Eq. (1.1) predicts a phase transition at a finite time tc, where an infinite 
cluster, or gel, is formed. Hence the total mass is the sum of the sol and the 
gel mass, and only the sum of both is conserved: 

Here g(r, t) represents the mass density of the gel. The constant on the 
right-hand side of (1.6) is equal to unity, due to the choice M =  V. 

In this paper I consider one particular choice for the reaction rates Ki: 
in (1.3), or (1.1), that leads to a gelation transition within a finite time: 

K u = / j  (1.7) 

The model (1.7) is a stylized version of the classical polymerization models 
RAf and ArRBg of Flory and Stockmayer, C9 11) which describe the growth 
of branched polymers. Equation (1.7) implies that the reactivity of a cluster 
is chosen proportional to its mass. Hence, if a gel also occurs, then the 
reactivity of the gel is proportional to g(r, t). Accordingly, the macroscopic 
law (1.1) assumes the form 

~ c k ( r , t ) = ~  ~ ijG(r,t) cj(r,t)-kck(r,t) ~ jcj(r,t)+g(r,t) 
i + j = k  j 1 

+ Dk Ace(r, t) (k = 1, 2,...) (l.8a) 

The toss term on the right in (1.8a) shows that k-mers may react with 
j-mers ( j =  1, 2,..) and with the gel. The time dependence of g(r, t) in (1.8a) 
is determined by 

gt g(r, t ) =  g(r, t) ~ k%k(r, t) (1.8b) 
k = l  
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Equation (1.8b) simply states that reactions between k-mers and the gel 
occur at a rate kckg, each reaction adding k units to the gel. Throughout 
this paper it is assumed that the gel network is immobile, i.e., that diffusion 
of the gel does not occur. 

The exact solution of Eqs_ (1.8a), (1.8b) with a general initial con- 
dition ck(r, 0) is not known. This is unfortunate, since we are interested in 
the spatial fluctuations about  ck(r, t), and the fluctuations can be calculated 
only after the macroscopic law (1.8) has been solved. However, Eq. (1.8) 
can be solved for one important special case, namely if the initial 
distribution is spatially uniform: 

ck(r, 0) = c~(0); g(r, 0) = g(0) (1.9a) 

In this case the solution ck(r, t) of (1.8) is also independent of r, i.e., 

ck(r, t) = Ck(t); g(r, t) = g(t) (1.9b) 

where ck(t) and g(t) satisfy the coupled chemical rate equations 

~k(t)= -1 ~ i jci(t)cj(t)-kcg(t) ( k = l ,  2,...) (1.10a) 
2 i+j=k 

~,(t) = g(t) M2(t) (l.10b) 

In the derivation of (1.10) I used the mass conservation law (1.6) in 
spatially uniform systems, i.e., 

kck(t)+ g ( t ) =  1 (1.11) 
k = l  

and introduced the moments M,(t) of c~(t), which are defined as 

M , ( t ) -  ~ k"ck(t) (1.12) 
k = l  

In the bulk of this paper I consider spatially uniform systems, as in (1.9a). 
The more general case, where the initial distribution contains statistical 
fluctuations, is discussed in Section 5. 

The chemical rate equation (1.10) is a special case of Smoluchowski's 
coagulation equation, ~12-14) corresponding to the choice (1.7) for the rate 
constants K•. Equation (1.10) has been solved for a general initial dis- 
tribution c~(0) by Scott (15~ and, more recently, by Ziffet aL (16) A summary 
of the properties of ck(t) can be found in Appendix B of ref. 17. Here I men- 
tion only the results for monodisperse initial conditions, c~(O) = 6~, since in 
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this paper most attention is paid to this case. The cluster size distribution 
in the sol is, for all t >/0, given by 

ck(t)=kk-2(te ~)k/k! t (k=  1, 2,...) (1.13) 

The concentration g(t) of the gel can now be calculated from (1.11). In the 
pre-gel stage (t < t C = 1) all mass is contained in the sol: Z ~ kck(t) = 1, so k = l  

that g(t) vanishes. In the post-gel stage ( t>  1) it follows from (1.13) that 
g(t)=(t- t*) / t ,  where t*(t) is the root of the equation t * e x p ( - t * ) =  
t exp( - t) in the interval 0 < t* < 1. This implies that g(t) increases linearly 
just above tc:g( t )~2(t-1)  as t]. l .  For t--* oe one finds that g(t)-+ 1, 
implying that at large times all mass is contained in the gel. An important 
characteristic of the gel point is the divergence ~11) at tc of the moments 
Mn(t), with n >/2. For instance, for n = 2 one finds that M2(t)= (1 - 0  -1 if 
t <  1, and M2(t)~ ( t -  1) -1 if t$1. 

To my knowledge, the solution of the master equation (1.2)-(1.4) with 
K~ as in (1.7) is not known for any initial distribution. Master equations 
of the form (1.2) have been written down, e.g., by Elderfield ~8) and 
Burschka, ~18~ but these authors are concerned mainly with the macroscopic 
law ~8) or with the fundamental problems in the description of reaction- 
diffusion systems. ~18) Much more is known about the simpler problem of the 
master equation for a single, isolated cell. This master equation is obtained 
from (1.2) if one forbids the jumps between cells and focuses on one of the 
cells 2. The master equation for the single cell has been solved exactly by 
Lushnikov, ~19) who calculates also the average number of k-mers (mk(t)). 
The fluctuations in the single cell have been studied extensively by 
van Dongen and Ernst. 117) The present paper extends the results of ref. 17 
for spatially homogeneous systems to the combined problem of reaction 
and diffusion. 

The quantities of main interest in this paper are the equal-time and 
two-time correlation functions of the concentrations of k- and l-reefs. In the 
continuous formulation, where mk~ is replaced by the k-mer density 
uk(r) = mk~/v, the two-time correlation functions are defined as 

((uk(rl, tl) ul(r2, t2))) = (Auk(r1, tl) Aul(r2, t2)) (1.14) 

where Auk(r, t ) -  uk(r, t ) -  (uk(r, t)).  The equal-time correlation functions 
(or covariances) are obtained from (1.14) by setting t2 = tl. 

The organization of this paper is as follows. Section 2 presents the 
details of the method and derives the basic equations to be used in 
subsequent sections. Sections 3 and 4 are devoted to two exactly soluble 
models. The model to be considered in Section 3 corresponds to diffusion 
constants Dk independent of the cluster size: 

Dk = D  (~:= 1, 2,.3 (1.15) 
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For this model the equal-time and two-time correlation functions can be 
calculated exactly, but only in the pre-gel stage (tl, t2 < to). It is shown 
that, for D~ as in (1.15), the density fluctuations diverge at the gel point, 
due to the large mobility of large clusters. Hence one needs a different 
model, where large clusters are less mobile, to study the fluctuations in the 
post-gel stage. The simplest choice is 

D k = D  (k=l , . . . , s ) ;  D k=O ( k > s )  (1.16) 

This second model is the subject of Section 4. Although 1 have only been 
able to calculate the equal-time correlation functions, the results show 
many interesting properties of the fluctuations in the presence of a gel. For 
example, the upper critical dimension in this gelling model is de=2.  
Finally, Section 5 discusses and summarizes the results. The body of this 
paper is restricted to monodisperse initial conditions. Some results for the 
model (1.15) with a general initial condition are given in the Appendix. 

2. M E T H O D  A N D  BASIC E Q U A T I O N S  

In this section kinetic equations are derived for the concentrations of 
sol and gel clusters and for the equal-time and two-time correlation 
functions. The basic assumption underlying the derivation is that the 
coagulation process is reaction limited. In this case one can apply the 
f2-expansion (5) to the reaction part in (1.3). Moreover, one can transform 
from the cell picture to a continuum formulation, replacing the cell index 
by the spatial coordinates r. 

One starts with the observation that the master equation (1.2) is not 
the most appropriate starting point to study the fluctuations in gelling 
systems. The reason has been discussed in ref. 17: to apply the f2-expansion 
to the reaction part of (1.2), one has to be able to distinguish between the 
sol and the gel. However, at the level of the master equation (1.2), each cell 
represents a finite system, and in finite systems the distinction between sol 
and gel clusters is rather vague. More precisely: in finite systems such as 
(1.2) the "gel" is not properly defined. 

For the special case of the model K o. = tj, this problem may be solved 
as follows. Consider the jump rates w(~) in (1.3) or, equivalently, the 
diffusion constants Dk in (1.8). Eventually, it is our object to construct 
a model where the sol clusters are mobile and the gel is immobile. For the 
diffusion constants this implies that we seek a model with 

D k > 0  ( k = l ,  2,..); D o = 0  (2.1) 
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Here Do is the diffusion constant of the gel. The crucial observation is that 
(2.1) corresponds to the limit r ~ o e  of a different model, where only 
clusters of size k ~< r can diffuse and all larger clusters are immobile: 

Dg>O ( k =  l,..., r); D k = 0  ( k > r )  (2.2) 

For  models of the form (2.2) there occurs an essential simplification, 
namely that the system can be described in terms of only r + 1 reactants. 
These r + 1 reactants are the k-mers, with 1 ~ k ~ r, and the clusters larger 
than r. For nonspatial systems, this observation was made already in 
ref. 17. 

The point here is that it is possible, at least for the model K~ = 0', to 
construct a master equation for the marginal probability distribution that 
the system is in state {m~r)}. The vector m~ r) is defined as 

m (r) = ~m mrs; m02) (2.3) 2 - -  k 1 2 ,  m 2 2 , . . . ,  

where m~2 ( k =  1,..., r) is the number of k-mers in cell 2, and m02-  = 
Zk>r kmk2 is the mass contained in clusters larger than r. The master 
equation in terms of the states m = {m(~ r)} has the same form as in (1.2), 

Pr(m, t ) =  TR(m, t )+  TD(m, t) (2.4) 

but the reaction and diffusion terms are slightly modified. The diffusion 
part of (2.4) is relatively simple. It has the same form as in (1.4), but now 
with zero jump rates for clusters larger than r: 

TD(m, t ) =  Z ~ w(uZ~[(m,)~ + 1)P(mD, t)--m,2P(m, t)3 (2.5) 
2,.u / =  1 

where mo differs from m only in the numbers of l-mers in cell 2 and in cell 
#, as in (1.4b). 

Equation (2.5) describes the diffusion of/-mers (with l =  1,..., r) from 
cell 2 to cell /~, similarly as in (1.4). The reaction part in (Z4) is more 
complicated, and will be discussed next. 

Clusters in cell 2 are involved in three types of reactions: 

(i) Reactions between i- and j-mers with both i~< r and j~< r. The 
transition rates for this process are the same as in (1.3), but now 
with i, j ~< r. 

(ii) Reactions between clusters with i~<r and j > r .  The 
corresponding transition rate (summed over all possible j )  is 
v - limi2mo2. 

(iii) Reactions with i > r and j > r. Such reactions do not change the 
state m~ r) and hence do not contribute to (2.4). 
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Note that the transition rates in processes (i) and (ii) depend only on the 
numbers mk~ (k=0 ,  1 ..... r) and not on the details of the cluster size 
distribution for k > r. As a consequence, one could write down an explicit 
expression for TR(m, t), as in (1.3), but for the present purposes it is more 
convenient to cast Tr~ in the compact form 

TR(m't)=~ {~ ~ KijAo;~[v-lmc~(mj,~-6ij) P~] 
i , j = l  

+ ~ i Ai~(v-lmixmo~,Pr)} (2.6) 
i=1  

where the difference operators A~. and A ix are defined, for arbitrary 
functions f (m),  as 

A,7~f(m) = f (  {mkv + 6)~v(bik + 6jk -- 6i+ j,k), 

mo~-- ( i+ j )  6z~rli+j r} ) - - f (m)  (2.7a) 

A~;~f(m) = f ( { m ~  + 6a~b~k , mov - i 6 ~ } ) - f ( m )  (2.7b) 

In (2.7a) I introduced a step function qx: 

r /x=0 (x~<0); r /x= l  ( x > 0 )  (2.8) 

The interpretation of Eqs. (2.6) and (2.7) is as follows. The terms in (2.6) 
containing A~)~ describe reactions of the form (i) with i,j<~r. There is a 
gain term and a loss term, corresponding to the first and the second term, 
respectively, on the rhs of (2.7a). The loss term corresponds to jumps out 
of the state m. The gain term represents jumps toward m from states with 
an i-mer and aj-mer  more and an ( i+ j ) -mer  less. The step function shows 
that one must distinguish the possibilities i+j~< r and i + j  > r. Similarly, 
the forms containing Ai~ describe reactions of the form (ii). 

I now proceed as follows. From the structure of the master equation 
(2.4), it is clear that the kinetic equations, to be derived below, consist of 
two parts: a reaction part, due to TR, and a diffusion part, due to TD. 
These contributions will be discussed separately: I consider first the 
contributions due to reactions (Section 2.1), and then the diffusion terms 
(Section 2.2). In Section 2.3 I collect results and discuss the transition to a 
continuous description. Finally, Section 2.4 is devoted to the special case 
where the initial state of the system (at t = 0) is spatially uniform. For such 
systems the kinetic equations are comparatively simple. 
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2.1. C o n t r i b u t i o n s  Due  to  React ions  

Let us start from the master equation (2.4) and consider only the 
reaction part TR. The contributions, due to TR, to the kinetic equations for 
the averages, the covariances, and the correlation functions will be 
discussed in this order. 

The contribution due to reactions (subscript R) to the rate equation 
for <mk~) (k--0, 1,...,r) may be obtained by multiplying the master 
equation (2.4) with mk~ and summing over all possible values of m. The 
result is, for k = 1 ..... r, 

L 3t (mk~)R= --(2V)-1 ~ Kgj(6~k+6jk--6i+j.k)(mi~(mj~--6O)) 
i , j=l  

- v-lk(mk~mo~) (2.9a) 

For k - -0  one finds that 

L 0t <m~ = (2v)-1 ~ Kij(i+j) qi+j r(mi~(mj,-Oij)) 
i,j--1 

+ v 1 ~ i2(mi~mo~) (2.9b) 
i = 1  

The only nonvanishing contribution to the right-hand side of Eqs. (2.%), 
(2.9b) comes from the term in (2.6) corresponding to cell ~. Note that Eq. 
(2.9) is not a closed equation for (mk~), due to the occurrence of the 
second moment <mi~mj~) on the right-hand side. 

An approximate, closed equation for <ink,) may be obtained with the 
use of the Y2-expansion. (5'~7~ The basic idea 2 of the g2-expansion is that the 
fluctuations in large cells are small, of relative order v -m.  In this case the 
occupation numbers ink, can be split into two parts, a macroscopic part 
< m ~ )  and a fluctuating part Amk~, 

mg~= (mk~) + Amk~ (k=O, 1,..., r) (2.10a) 

where (mk~) is of the order of v, and Amk~ of the order of v 1/2. Conse- 
quently, the second moments in (2.9) can be expanded in powers of v as 
follows 

(mi~mj~) = (mi~) (mj~) -{- ( Ami~ Amj~) 

= (mi~)(mj~) + O(v) (v >> 1) (2.10b) 

�9 J ( 5 )  2 Actually, to make the ~-expansion systematic, more sophisticated arguments are reqmrea, 
but these refinements are of no need here. 



Reaction-Limited Aggregation 231 

The correction term on the right in (2.10) is negligibly small, of relative 
order v-  1, if the cell size v is large. Thus, one finds that the contribution to 
O(mk~)/Qt due to reactions is given by 

0 
~?t(mk~)R=--(2V) 1 ~ Kij(6i~+6j~_~i+j,~)(mi~)(mj, ) 

i , j = l  

- v - lk(mk~)(mo~)  (1 ~<k~<r) (2.1 la) 

L c~t (mo~)R = (2V) - i  ~ Kij(i+j) tli+j r(mi~)(mj=) 
i , j = l  

+ v 1 ~ i2(mi~)(mo~) (2.11b) 
i - - 1  

provided that the celt size v is large. 
Thus, the cell size v should simultaneously satisfy two conditions. On 

one hand, the cells must be large (i.e., contain many clusters) in order that 
the Q-expansion can be applied. On the other hand, the cells should be 
small compared to the average volume traversed by a cluster during its 
lifetime, in order that the mean-field assumption within each cell is justified. 
Clearly these conditions can both be fulfilled only if clusters diffuse over 
large distances and collide many times before they finally react. This 
requirement need not be unrealistic. For instance, Flory ~ states that in 
condensation polymerization generally "no more than about one 
bimolecular collision in 1013 between reactants is fruitful." 

Along similar lines as in (2.11), one may derive an equation for the 
covariances ((mk~ml~)), which are defined as 

((m~ml~)) - (Amk~ Amt~) (k, l= O, 1 ..... r) (2.12a) 

However, the resulting kinetic equations are much simpler if one considers, 
instead of ((mk~m~)), a new quantity [mk~mt~)) that differs from the 
covariances only on the diagonal, where k = l and ~ -- fl: 

[mk~ml~)) = ((mk~ml~)) --6~t6~(mk~ ) (1 <<.k, l<~r) 
(2.12b) 

= ((mk~mt~)) ( k = O o r l = O )  

Note that [mk~m~)), with 0 ~ k, l ~  r, is a mixed cumulant: it is a factorial 
cumulant (5) only for 1 ~<k, l~r .  

To obtain an equation for [m~mt~)), it is convenient to derive an 
equation for the second moment (mk~ml~) first. Subtraction of the 
equations for (mk~)(C3/C3t)(ml~)R , (mt~)(t?/C3t)(mk~)R , and (if 1 <.k <.r) 
6kz6~(t?/#t)(mk~)R then yields the desired equation for [mk~mza)). This 
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equation is not closed: the right-hand side typically contains factors of the 
form (mjnj~ Amt~). An approximate, closed equation, valid for large cells, 
may be obtained with the use of the O-expansion. The arguments are the 
same as in (2.10). The result is 

L 
j = 0  

+ vJ~Q~)(t)+O(v ~/2) (v>~l) (2.13) 

The matrix A~)(t) in (2.13) is given by 

A~)(t) = - u - 1  ~ go(~ik q- Ojk -- ~i+j,k)(mia) 
�9 i = 1  

-- v-lkSkj(mo~) (1 <<.k,j<~r) (2.14a) 

aCo~)(t)=v i ~ Kij(i+j)~li+j ~(mi~) 
i = l  

+ v-~j2(mo~) (1 ~<j~< r) (2.14b) 

A~o)(t) = - -v - l k (mk , )  (1 <<.k<~r) (2.14c) 

A~o~o)(t)=v 1 ~ i2(m~) (2.14d) 
i = 1  

The inhomogeneity Q~)(t) has the form 

Q~)(t) = -v-2kl(mk~)(m/~)  (1 ~<k, l~< r) (2.15a) 

O(o])(t)=Q~J(t)=O (1 ~<k~<r) (2.15b) 

1 v 2 ~ Ko(i+j)2qi+j r(mi~)(mj~ ) O (o~ol ( t ) = -~ 
i , j = l  

+ v 2(mo~ ) i i3(mi~) (2.15c) 
i = 1  

Note that the correction term in (2.13) can be neglected if v is large. 
Finally, consider the two-time correlation functions x~ff(t2, tl), which 

are defined as 

Xlk ( t2, tl) =-- (( mk~( tl) m~(t2))) 

=(Amk~(tl)Amla(t2)) (t2~> tl >~0) (2.16) 
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The correlation functions show how the fluctuation Amt~ at time t 2 in cell fl 
is influenced by the fluctuation Amk~ at the earlier time tl in cell e. 
Throughout, I choose t2 >~ tl 7> 0. 

The calculation of the correlation functions consists of two steps. The 
first step is the calculation of the conditional average 

dmt~(t) - (Amz~(t)tm(tl) ) (2.17) 

for a given value of the fluctuations at time t~. It follows immediately from 
(2.10a), in combination with (2.11), that Amta satisfies the linearization of 
Eq. (2.11), i.e., 

~-ym-~l~(t) = ~ A~)(t)Amj~(t)+O(1) ( v > l )  (2.18) 
R j=O 

where A~r is given in (2.14). The initial condition for Eq. (2.18) is 
Amz~(tl) = Amz~(t~). The second step in the calculation of the correlation 
functions is to multiply Amt~(t ) with the initial fluctuation Amk~(tl) and to 
average over all possible values of m(t~). As a consequence, one finds that 
the correlation functions ~ Ktk(t, tl) also satisfy an equation of the form 
(2.18), i.e., 

-~ Klk (t, tl) ~ A~a}(t) ~ = K)k(t, tl)--}-O(1 ) (v>>l) (2.19) 
R j = 0  

in this case with the initial condition 

tClk (ta, t l ) =  ((mk~(tl)m,~(tl))) 

2.2. Contr ibut ions Due to Di f fusion 

Diffusion (subscript D) is described by the second term, To, in the 
master equation (2.4). Recall that only clusters of size k ~< r can diffuse: 
w (~ = 0. It is an elementary excercise (ref. 5, Section VII.6) to verify that #2 
the contribution of the diffusion part To to (O/~t)(mk~) is exactly given by 

Ot (m~)D = ~ W(~l(mkx) (2.20a) 
2 

where the matrix W (k) is related to the hopping probabilities w(k. ) in T D as 

W•k) . . . .  /k) _ 6~;~ Z wCk) (2.20b) 
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Similarly, one can show (ref. 5, Section VII.6) that diffusion yields the 
following contribution to the rate equation for the cumulants [mk~m~)): 

2 2 

(2.21) 

Finally, from (2.20a) it follows directly that the conditional averages 
Amt~(t ), and hence also the correlation functions a~ Kl~(t, tl), satisfy an 
equation of the form (2.20a), i.e., 

•lk (t, tl) = (2.22) �9 , f l2 ,~ lk  ~*,  t l )  
D 2 

The kinetic equations for the averages and correlation functions are now 
found by "compounding the moments, ''(5) i.e., by combining the diffusion 
terms (2.20a), (2.21), and (2.22) with the reaction terms (2.11), (2.13), and 
(2.19). 

2.3. The Cont inuum Formulat ion 

The formulation used above in terms of a discretized space subdivided 
into cells of size v, is somewhat unsatisfactory: in real, continuous systems 
there is no basis for the unique position of the "cell." Hence, the kinetic 
equations should not depend on the physically irrelevant parameter v. 

For this reason I transform from the cell picture to a continuous 
formulation, replacing the cell index c~ by the spatial coordinate r and the 
occupation numbers mk~ by the k-mer density uk(r). The transformation 
may be summarized as 

mk~/v ~ uk(r) (k = 0, 1,..., r) (2.23a) 

v ~ --, f dr (2.23b) 
2 

6~;jv ~ 6(r - r') (2.23c) 

W(~ ) ~ f dr' Wk(r I r') (2.23d) 
2 

The integrals in (2.23b), (2.23d) are over all space. In (2.23d) I have 
replaced the hopping rates W~ ) by the transition probability Wk(rlr' ) for 
jumps between r and r'. ! make two more assumptions: 

(i) That all jumps are small, i.e., that the jump size Ipl, with p -  
r - r ' ,  is small compared to the distances over which the averages and 
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correlation functions vary appreciably. Note that [p[ is of the order of the 
cell diameter. 

(ii) that the space is homogeneous and isotropic, so that Wk(rlr' ) is 
a function only of the jump size tPI: W~(rlr ' )= Wk(p). 

Under these conditions (2.23d) can be replaced by the diffusion 
operator: 

Z W~. ) ~ DkA (2.24a) 

where the diffusion constant Dk is related to the matrix Wk(r[r') as 

-• Dk-2d dp p2Wk(p) (2.24b) 

Here d is the dimensionality of the system. The approximation (2.24), valid 
if the jumps are small, is known as the diffusion approximation. 

Let us collect our results. Start with the macroscopic law, i.e., the rate 
equation for the averages ( m ~ ) .  Combination of the reaction part (2.11) 
and the diffusion part (2.20a) yields 

(uk(r, t ) ) = 2 j ~ o  Akj(r' t)(uj(r,  t ) )  0t 

+ DkA(uk(r, t)) (k=0 ,  1,..., r) (2.25) 

The matrix Akj(r , t) is given by (2.14), with v- l (mi~)~ (ui(r, t)).  In 
(2.25) it is understood that D o = 0: clusters larger than r do not diffuse. The 
initial condition for (2.25) is determined by the initial distribution in the 
cell model, i.e., (u~(r,O))=mk~(O)/v. The boundary condition at the 
surface S of the system is 

0 
d S ' ~ r  r (uk(r, t ) )  = 0  (rES)  (2.26) 

since jumps across the surface do not occur. 
I add several comments. First, Eq. (2.25) with Akj given by (2.14) has 

the same form as the reaction-diffusion equation (1.8), but now with 
Dk = 0 if k > r. Since the parameter r in (2.25) is arbitrary, one can take the 
limit r ~ ~ and find that (1.8) is the correct macroscopic equation both in 
the pre- and in the post-gel stage. Another remark is that the gel density 
g(r, t) can now be defined as the limit r ~  ~ of the concentrations 
(u0(r, t ) )  in (2.25). As in ref. 17, one concludes that the concept of a "gel" 
has a meaning only in the infinite system, i.e., after the Q-expansion has 
been applied. 
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Next consider the fluctuations in uk(r, t). In the continuum for- 
mulation the covariances ((mg~m~)) and the cumulants [rnk~mzr are 
replaced by 

v 2((mk~ml#)) --* ((uk(rl) ut(rz))) (2.27a) 

v-2[mk~mt~)) ~ [uk(rl) ul(r2))) (2.27b) 

The relation between these quantities is 

[uk(rl) ut(r2))) = ((uk(rl) ul(r2))) --6~z6(r1- r2)(uk(rl)) 

(1 <~k, l<~r) (2.28a) 

= ((u~(rl) uz(r2))) (k = 0 or l=  0) (2.28b) 

Combination of (2.13) and (2.21) and use of the continuous description 
(2.23), (2.24), (2.27) yields the following kinetic equation for [ukut)): 

0 
(9"-t [u~(rl) u/(r2))) 

= ~ {Akt(rl)[uj(rl) ut(r2))) +A~(r2)[uk(rl) uj(r2)))} 
y=o 

+ 6(rl - r2 )  Qkt(r,, t) + (DkA 1 + DzA2)Eu~(rl) uz(r2) )) (2.29) 

Here Qkt(r, t) is given in (2.15), with v l(m~,} ~ (uk(r)),  and z~i~-~2/(~r2  

(i = 1, 2). The initial condition for Eq. (2.29) is 

[uk(rl, 0) ul(r2, 0))) 

= -cSkt6(r 1 - r2) (uk( r l ,  0)} (1 <~k, l<~r) (2.30) 

= 0  ( k = 0 o r l = 0 )  

The boundary condition is again given by (2.26), with (uk(r)} replaced by 
[uk(r) u~(r2))). An important restriction on the covariances is imposed by 
the conservation law for the total mass: 

k = l  

For the cumulants [ukut)) this implies that 

k = l  

= --/(ul(r2)} (1 <.l<~r) (2.31b) 

=o (t=o) 
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Clearly one can take the limit r ~  ~ in (2.29), if desired, since the 
parameter r in (2.29) is arbitrary. 

Finally, consider the correlation functions as K;k (t2, tl). In the continuum 
formulation, the correlation functions take the form 

where 

v-2 tc~( t2 ,  t l )  ~ ~C;k(r2, t2; r l ,  tl) 

~clk(r2, t2; r l ,  tl) ~ ((uk(rl ,  tl) u;(r2, t2))) 

From (2.19) and (2.22) one finds the following equation for tqk: 

•t K;~(r2' t; rl ,  tl) = Ao(r2, t) Kjk(r 2, t; rl ,  tl) 
j=0  

+ D;A2X;k(r2, t; rl, tl) 

The initial condition for (2.33) is 

/elk(r2, /1; r l ,  t l ) =  ( ( u k ( r l ,  t l )  u l ( r 2 , / 1 ) ) )  

(2.32a) 

(2.32b) 

(2.33) 

2.4. Spatially Uniform Initial States 

The rest of this section is restricted to the special case 3 where the 
system is spatially uniform at the initial time t = 0, i.e., where rnk;~(0 ) = 
vmk(O)/M or, in the continuum formulation, 

uk(r, O)=mk(O)/M--ck(O) (k=0 ,  1 ..... r) (2.34a) 

Moreover, I take the thermodynamic limit: 

M ~  ~ ,  V ~  ~ (2.34b) 

where the density M / V =  1 is kept fixed. 
The choice (2.34) is extremely convenient, for various reasons. First, 

the solution of the macroscopic equation (2.25) with the initial condition 
(2.34a) is almost trivial. One finds that for all t/> 0 

(Uk(r, t ) )  = ck(t) (k = O, 1,..., r) (2.35) 

where ck(t) is the solution of Smoluchowski's equation in the form (1.10), 
with the initial condition Ck(O) in (2.34a). Note that the solution (2.35) 
satisfies the boundary condition (2.26). Second, if one is interested in 
spatial fluctuations purely due to the interplay of reactions and diffusion, it 

3 The more general case, where the initial distribution contains statistical fluctuations about 
the spatially uniform state, is discussed in Section 5. 
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is advantageous to eliminate the influence of the initial distribution. This is 
precisely what is done in (2.34a). Similarly, the choice (2.34b) eliminates 
the influence of the boundaries. 

Apart from the drastic simplification (2.35), the choice (2.34) has the 
following consequences. The cumulants [uk(r 1) ul(r=) )~ and the correlation 
functions tczk(r=, t2;rl ,  tl) depend on r~ and r2 only through the relative 
coordinates r = rl - r2: 

[uk(rl) ul(r2))) = Ekl(r, t) (2.36a) 

xl~(r2, t2; rl,  t l ) =  tctk(r; t:, tl) (2.36b) 

More precisely, Ekz and Ktk depend on r only through the relative distance 
Irl. This follows immediately from the fact that, due to (2.34), both the 
problem and the initial condition are homogeneous and isotropie. 

The equation for the cumutants Ekl(r, t) follows directly from (2.29) as 

~t E~,(r, t )=  ~ [Akj(t)Ejz(r , t)+A,j(t)Ek](r , t)] 
j = 0  

+ 3(r) Qk,(t) + (Dk + Dz) AEkt(r, t) (2.37) 

where I have defined ~ - 0Z/0r 2. The matrices Akj(t ) and Qkl(t) are given 
by (2.i4) and (2.15), with (mi~)/v ~ ei(t). The initial value for (2.37) is 

E~z(r, 0 ) =  -6kzf(r)  ck(0) (1 ~< k, l~< r) 
(2.38) 

= 0  ( k = 0 o r l = 0 )  

and the boundary condition reduces to ~Ekt/~3r = 0  at Irl = ~ .  An impor- 
tant property is 

f drIEo,(r,t)+ ~ kEkl(r,t)]=-lcl(t ) (l~<l~<r) 
k = l  

(2.39) 
=o (/=o) 

This is the mass conservation law (2.31) for systems with a spatially 
uniform initial state. 

The correlation functions xzk(r; t, tl) satisfy the following linear 
equation due to (2.33): 

c3t ~ctk(r; t, t l ) =  ~ Ao(t) ~cjk(r; t, t l ) + D r  JKt~(r; t, tl) (2.40) 
j = 0  
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to be solved with the initial condition that for tJ, tl, xlk(r; t, t~) reduces to 
the covariances. 

In order to solve Eq. (2.37) for Eke(r, t), it is convenient to introduce 
the Fourier transform 

Fkz(q, t) = f dr I-exp(iq �9 r)]  E~t(r, t) (2.41) 

which satisfies, for each fixed value of q, a set of coupled ordinary differen- 
tial equations: 

~t Fk,(q, t) = L [Akj(t) Fj,(q, t) + Ao(t ) F~j(q, t)] + Qk,(t) 
.L 

j = 0  

- (Dk + D,) q2Fkt(q, t) (2.42a) 

Note that F~t(q, t) depends on q only through its modulus Iq[. The initial 
condition for (2.42a) follows from (2.38) as 

Fkz(q, 0) = --6kic~(O) (1 ~<k, l~< r) 

= 0  ( k = 0 o r I = 0 )  

The mass conservation law (2.39), in terms of Fkt(q, t), reads 

(2.42b) 

r 
Fo,(O,t)+ )-2 kFk,(0, t ) = - / c , ( t )  (l~</~<r) 

k= 1 (2.43) 

=0 (/=0) 

Similarly, to solve Eq. (2.40), it is convenient to introduce the Fourier 
transform ~lk of ~t~, which satisfies the following set of equations: 

A c~t ~,k(q; t, t l ) =  ~ Ao(t) ~jk(q; t, t , ) -  Dlq2~tk(q; t, tl) (2.44) 
j = 0  

Equations (2.42)-(2.44) are the starting point for the calculations in 
Sections 3 and 4. 

Before concluding, I remark that Eqs. (2.42) for Fki and (2.44) for ~lk 
have an important special case, q = 0. Comparison of Eq. (2.42) for q = 0 
with Eq. (2.23a) of ref. 17 shows that Fk/(0, t) is identical to the (factorial) 
cumulants of the nonspatial problem. More precisely, one finds for 1 <~ k, 
l ~< r that 

Fkt(O, t ) = f  dr Ekt(r, t)=ekt(t ) (1 <~k, l<~r) (2.45a) 

822/54/1-2-16 
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where ekt is the factorial cumulant v- ~ [mkmt] of ref. 17. For l = 0 and k # 0 
one has 

Fo~(0, t)= r~0(0, t)= ( (~ r ) )  

=--(kCk+ ~ le,k) (1 <<.k<~r) (2.45b) 
l = 1  

Finally, if both k = 0 and l = O, 

Foo(0, t ) =  <<(~r)2>> 

= kle ,+ 12c, I245c) 
k , l = l  l = 1  

Here ~k = v-~/2 Amk is the fluctuation in the number of k-mers, and ?r = 
v 1/2 3mo is the fluctuation in the mass of clusters larger than r. Similarly, 
one finds that ~tk(0; t2, tl) is identical to the correlation functions of the 
nonspatial problem. In the notation of ref. 17, one has for 1 <<.k, l<~r 

~k(0; t2, tl) = ~k(t2, t~) (1 ~< k, l~< r) (2.46) 

whereas for k = 0  o r / = 0 ,  ~tk(0; t2, tl) is in an obvious way related to the 
correlation functions for the mass contained in clusters larger than r. The 
identifications (2.45) and (2.46) hold for a general (but spatially uniform) 
initial distribution ck(0) and for all possible choices of the parameter r and 
the diffusion constants Dk. This shows that the nonspatial cumulants and 
correlation functions, considered in ref. 17, also have great significance for 
the reaction-diffusion problem considered in this paper. 

3. AN EXACTLY SOLUBLE M O D E L  FOR THE PRE-GEL STAGE 

This section is restricted to the pre-gel stage (t < to), where there is no 
gel, so that (for r --* ~ )  all correlation functions Ekt and ~ctk with k = 0 or 
l = 0 vanish. A model is presented for which the kinetic equations derived 
in Section 2.4 can be solved exactly. The diffusion constants characterizing 
this model are given by 

Ok = O (k = 1, 2,...) (3.1a) 

i.e., the diffusion constant is chosen to be independent of the cluster size. 
The presentation is restricted to monodisperse initial conditions, 
corresponding to 

uk(r, 0) = 6kl (3.1b) 
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The equal-time correlation functions (covariances) are calculated in Sec- 
tion 3.1, the two-time correlation functions in Section 3.2. The covariances 
may also be calculated exactly (in terms of their generating function) for 
general initial conditions uk(r, 0 )=  G(0). These results for general initial 
conditions are presented in the Appendix. 

3.1, The Equal -T ime Corre lat ion Functions 

To calculate the covariances ((uk(r~)ul(r2))), let us consider first the 
cumulants 4 Ekt(r, t) in (2.37) or, rather, their Fourier transform Fkl(q, t). 
The Fourier transform Fkt may be calculated from Eq. (2.42) with r = oo 
and Dk = D. In the pre-gel stage, Eq. (2.42) reduces to 

~-t Fkz(q, t)= ~ [AkjF;z+AljFk/] + Qkt--2DqZFk, 
j = l  

(3.2a) 

where in this case k, l = 1, 2 ..... The matrices Akj and Qkt are given by 

Akj(t) = -- ~ Kij(Oik + (~jk -- 6i+j.k) ci(t) 
i = 1  

Qkt(t) = --kick (t) cl(t ) 

(3.2b) 

(3.2c) 

Equations (3.2b) and (3.2c) follow directly from (2.14a) and (2.15a), with 
<mi~>/v --, ci(t) and r = oo. 

In the Appendix, Eq. (3.2) is solved for general initial conditions with 
the use of generating function techniques. For monodisperse initial 
conditions, this result for the generating function may be inverted to yield 
the following, surprisingly simple, expression for Fkt(q, t): 

Fkl(q, t) = ekl(t ) z(q, t) (3.3a) 

where 

Z(q, t ) - ( 1 - t ) e  2~ + ;odZ ( 1 - z ) - 2  e2Oq2~ ] (3.3b) 

and ekl(t) is the factorial cumulant of the nonspatial problem, discussed in 
ref. 17: 

ekl(t ) = --(1 -- t) kick(t) cl(t ) 

Here ck(t) is the concentration of k-mers, given in (1.13). 

4 Note that in the pre-gel stage Ek~ (with k. l= 1, 2,...) is simply a factorial cumulant. 

(3.3c) 
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We can verify, by inserting (3.3) into (3.2), that (3,3) is indeed the 
solution of (3.2). Substitution of (3.3a) into the left-hand side of (3.2a) 
gives 

LHS(3.2a) = kktz(q, t) + ek t~  7~(q, t) (3.4a) 

Similarly, the right-hand side of (3.2a) yields 

RHS(3.2a)= z {~  (Akjejt + A~ekj)-- 2Dq2ek,}--klck c, 

= Z{kkt + klckcl-- 2Dq2ekl } -- klCkCt (3.4b) 

The second step of (3.4b) uses the fact that ekz(t) satisfies Eq. (3.2a) for 
q = 0 [see the discussion around (2.45a)]. Comparison of Eqs. (3.4a) and 
(3.4b), in combination with Eq. (3.3c) for ekt(t), shows that Fkt(q, t) in 
(3.3a) is indeed the solution of Eq. (3.2), provided that Z(q, t) satisfies the 
following ordinary differential equation: 

~3 Z & +  [ ( 1 - 0  -1 + 2 D q Z ] z =  ( 1 -  t)-* (3.5) 

The initial condition for (3.5) is Z(R, 0 ) =  1, as may be seen from a 
comparison of (2.42b) and (3.3a) for t = 0 and k = t =  1. The solution of 
(3.5), satisfying )~(q, 0 ) =  I, is given by (3.3b). Note that Fkt(q, t) in (3.3) 
satisfies the condition (2.45a) for all t < tc = 1. 

Equation (3.3) for the Fourier transform Fkt(q, t) may readily be 
inverted to yield the factorial cumulants Ekz(r, t). To do this, it i s  
convenient to introduce the d-dimensional Gaussian distribution with zero 
mean and variance 0"2: 

g(r; a 2) - (27Z0- 2) d/2 exp( - - r 2 / 2 a  2 ) (3.6a) 

which has 

f dr g(r; a 2) exp(iq" r) = exp(- �89 z) (3.6b) 

as its Fourier transform. From (3.3b) and (3.6) one can infer that Ekl(r, t) 
takes the form 

E~/(r, t) = ekt(t) G(r, t) (3.7a) 
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with G(r, t) given by 

G(r , t )=(1- t )  g(r;4Dt)+ d z ( 1 - z )  2g(r;4D(t-r)) (3.7b) 

As an immediate consequence, one finds the following expression for the 
covariances, due to (2.28a): 

((uk(r~) ul(r2))) = ekl(t) G(r, t) + 6ktf(r) ck(t) (3.8) 

where r = r 1 -  r2, and ck(t) is given in (1.13). The second term on the right 
in (3.8) is a Poisson term, and would be the only term if all numbers uk(r) 
would be taken from independent Poisson distributions. The first term on 
the right is always negative if t < 1 (sub-Poisson distribution). This can be 
viewed as an effect of the mass conservation law: a positive fluctuation in 
the number of k-mers at rl implies that, most likely, there will be fewer 
/-mers at r 2. 

A quantity of considerable interest that can be calculated directly from 
(3.8) is the density~:lensity correlation function, i.e., 

p(r, t) =- ~ kI (( uk(r l ) ul(r2))) (3.9) 
k, l  

where r = r 1 - r  2. An expression for p(r, t) is obtained by multiplying (3.8) 
with kl and summing over all k and l. The result is 

p(r, t ) = ( 1 - t ) - '  I f ( r ) - G ( r ,  t)] (3.10) 

The derivation of (3.10) used (3.3c) and the explicit form of the second 
moment of ck(t), i.e., 

M2(t) = - ~ k 2 c k ( t ) = ( 1 - - t )  -1 ( t < l )  (3.11) 
k = l  

An expression for the Fourier transform t3(q, t) of p(r, t) follows 
immediately from (3.10) as 

#(q, 0 = ( 1 - 0  -1 I-1-z(q, t)] (3.12) 

since x(q, t) and G(r, t) are related by Fourier transformation. 
What happens when the system approaches the gel point to= 1? To 

see this, consider Eq. (3.3b) for z(q, t). In the limit t 1" 1 one finds that 

Z(q, t)--, 1 (t1" 1) (3.13a) 
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irrespective of the value of q. In terms of G(r, t) this implies that 

G(r, t)--, 6(r) (tT 1) (3.13b) 

Thus, we arrive at our first conclusion: as tT to, the covariances ((uku~)) in 
(3.8) assume the form of a delta peak, implying that the width of the spatial 
profile of the fluctuations vanishes near the phase transition. 

The leading behavior (3.13) yields insufficient information to study the 
behavior of the density fluctuations as t 1" to. This may be seen directly from 
(3.10) or (3.12). The next order in (3.13a) is 

z ( q , t ) = l + 2 D q 2 ( 1 - t ) l n ( 1 - t ) + O ( 1 - t )  (t~ 1) (3.14) 

so that 

,6(q, t )~ -2Dq 2 ln(1 - t) ~ ~ (t T 1) (3.15) 

Hence the second conclusion is that the density fluctuations diverge at 
all length scales as t T tc or, alternatively, that the spatial fluctuations in 
the density are extremely large. An immediate consequence is that the 
continuum approximation, which is based on the assumption that the 
correlation functions are smooth, breaks down shortly before tc: the 
present methods cannot be used to study the model Dk = D in the post-gel 
stage. Physically this is obvious: in the model (3.1) large clusters are much 
too mobile. Due to this large mobility, large clusters can be brought 
together to react, whereas they would stay apart without diffusion. In this 
manner large clusters contribute significantly to the fluctuations in the 
density, particularly in the vicinity of the gel point. 

3.2. The T w o - T i m e  Correlat ion Functions 

Next consider the behavior in the pre-gel stage of the correlation 
functions ~lk(q; t, tl), which satisfy Eq. (2.44) with k, I=  1, 2 .... and r = ~ ,  
i.e., 

~t ~lk(q; = 
t, tl) ~ A~j(t) t~jk(q; t, tl) Dq2~tk(q; t, tl) (3.16a) 

j = l  

The matrix A 0 is given in (3.2b). The initial condition for (3.16a) follows 
from the fact that, for t$ t~, ~tk(r; t, tl) reduces to the covariances 

~k(q; t~, tl) = F~k(q, t~) + 6~kCk(t~) (3.16b) 

Equation (3.16) may be solved in two steps. In the first step, eliminate the 
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explicit q dependence in (3.16a) by transforming from t~tk to a new function 
ark, defined as 

ark(q; t, t~) -= t~tk(q; t, tl) e oq2(t-q) (3.17) 

Substitution of (3.17) into (3.16a) and use of the explicit form (3.2b) of 
the matrix Akj(t) shows that azk satisfies the following set of ordinary 
differential equations: 

~t at~(q; = 
t, t,) ,_, Ao(t)  ajk(q; t, tl) 

j = l  

=-- lc zZ ja jk - - lazk+ Z ijGajk (3.18a) 
j i + j = l  

The initial condition for Eq. (3.18a) is the same as for ~xk(q; tl, t~), i.e., 

a~k(q; t~, t~) = Fkt(q, t~) + ~k/Ck(tl)  (3.18b) 

Note that a/k depends upon q only through the initial condition. 
The second step in the calculation of ~tk is to eliminate the first term 

on the right in (3.18a). To do this, observe that the sum Zjjajk  is constant 
for all t < to: 

~ja~k(q;t,  tl)=Const=--~k(q, tl) (tl <~t<tc .=l)  (3.19a) 
J 

This may readily be demonstrated from Eq. (3.18a) by multiplying this 
equation with l and summing over all L The value of c~k(q, tl) follows from 
(3.18b), (3.3), and (3.11) as 

ek(q, t~) = kck(tl)[1 -- )~(q,/1)3 (3.19b) 

Furthermore, let us transform from a~k to new functions blk defined as 

btk(q; t, tl) - ark(q; t, tl) + lct(t) ~k(q, t l ) ( t -  tl) (3.20) 

and satisfying an equation of the form (3.18a), but now without the first 
term on the right-hand side: 

0 
-~tbzk(q;t,t~) = ~ O'ci(t) bjk(q;t , t~)- lbzk(q;t , t~)  (3.21) 

i + j - I  

The initial condition for btk is the same as that for a~k, given in (3.18b). 
The problem (3.21) has been solved in ref. 17. The result is that 

btk(q; t, t~) is linearly related to its initial value at t = t~ as follows: 

bzk(q; t, t~) = ~, Y~(t, t~) bjk(q; tl, t~) (3.22a) 
j - - i  
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where the evolution matrix Yo(t, tl) is given by 

Yo(t, t,) = j ( t -  tl) 

The matrix Y~ has the property 

(It - j t  1 ) t - j -  1 

( l - j ) !  
e j'~-zt (3.22b) 

where 
[- 

G(r; t2, t l ) =  (1 - t l )  Lg(r;2D(tl  + t2)) 

+ fo' dr ( 1 -  ~) -2 g ( r ; 2 D ( t 2 + t l - 2 Z ) ) ]  (3.25b) 

Thus xtk(r; t2, tl) is a superposition of Gaussians. The first two terms in 
(3.25a) correspond to correlations formed between tl and tz. The last term, 
proportional to G(r; t2, t~), represents correlations spreading since t = 0  
[first term on the rhs of (3.25b)] or since some time t' with 0 < t ' <  t~ 
[second term on the rhs of (3.25b)]. 

Yo(t, tl) jcj(t~)= lc,(t) (3.23) 
j=l 

From Eqs. (3.17), (3.20), (3.22a), and (3.23) it then follows that 
~k(q; t2, tl) is related in a simple way to the correlation functions ~ctk(t2, q )  
of the nonspatial problem [see (2.46)] 

ts t2, t l )=  e--Dq2(t2 q){lglk(t2, tl) 

+ (1- t2 )k lck ( t l ) c , ( t2 ) [1 - )~(q ,  t~)]} (3.24a) 

The explicit form of ~ctk(t:, t~) has been calculated in ref. 17. The result is 

~ctk(te, tl) = Ytk(tz, t~) ok(t1) - (1 - tl) klck(tl) c/(t2) (3.24b) 

Note that ~tk in (3.24a) reduces to ~ctk(t2, t~) for q = 0 .  Further note that 
the second term on the right in (3.24a) vanishes if t2 is chosen at the gel 
point (t2 = 1). 

Equation (3.24) may be inverted with the use of (3.6) to yield an 
expression for the correlation functions Ktk(r; t2, ta). The result is 

~lk(r; tz, tl) = ~Ctk(t 2, tl) g(r; 2D(t2 - tl)) 

+ (1 - t2) kick(t1) ct(t2)[g(r; 2D(t 2 - tl) ) - G(r; t2, tl) ] 

(3.25a) 
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An interesting interpretation of Eq. (3.25a) may be obtained as 
follows. Consider the fluctuations in the mass density, which [for Dk as in 
(3.1),] are purely due to diffusion. The correlation function p(r; t2, t~) for 
the mass density is defined as 

p(r; t2, tl)=- ~ kl((u~(rl, tl) ut(r2, t2))) 
k,l 

(3.26) 

(with r l -  r2 = r), and may be calculated from (3.25a) by multiplying with 
kl and summing over all k and/ .  The result is 

p(r; t2, t~) = (1 - - t l )  -1 [g(r ;2D(t2- t l ) ) -G(r;  t2, tl)] (3.27) 

In the derivation of (3.27), Eq. (3.11) was used for M2(t). Note that the 
first term in (3.25a) does not contribute to p(r; t2, tl), due to (3.24b) and 
(3.22b). Thus, one arrives at the following interpretation of Eq. (3.25a). The 
first term on the right, proportional to the nonspatial correlation functions 
tczk(t2, tl), represents the fluctuations within each cell, purely due to 
reactions. The second term, proportional to p(r; t 2, tl), represents the 
fluctuations in the mass density and hence is purely due to diffusion. A 
similar interpretation holds of course for (3.8), which can be obtained from 
(3.25) by setting t2 = t~. 

4. F L U C T U A T I O N S  IN THE POST-GEL STAGE 

In the previous section it was shown that the model (3.1), i.e., D~ = D 
(all k), leads to a divergence of the density fluctuations as t T to. For this 
model the method of this paper breaks down at the gel point. In this 
section I show that the divergence of the density fluctuations at the gel 
point is an artefact of the model (3.1), where large and small clusters are 
equally mobile. 

Therefore, to study the post-gel stage, we want a model where small 
clusters are mobile and large clusters are not. The simplest model of this 
form is 

Dk=D ( k = l  ..... s); D k = 0  ( k > s )  (4.1) 

The cluster size s in (4.1) represents the boundary between small and large 
clusters. As it turns out, the model (4.1) is still too complicated to be 
solved in all detail. I have only been able to calculate the covariances. The 
solution is valid only if the initial state is monodisperse [see (3.1b)-]. Even 
then, some of the results are not very explicit. Nevertheless, one can extract 
sufficient information to study the post-gel stage. 



248 van Dongen 

Let us start from Eq. (2.42) for the Fourier transform Fkl(q, t) of the 
cumulants Eke(r, t). In the derivation of (2.42) it has been assumed that 
Dk = 0 for all k > r. Hence, any equation of the form (2.42) can be used to 
study the model (4.1), provided that r/> s. Below I choose r = s. 

The solution of (2.42) for q = 0 was found in Section 2, Eq. (2.45). A 
convenient short-hand notation is Fk~(O, t)-= ekt(t), where 

ekt(t ) = - (1  - t) kick(t) ct(t) (1 ~< k, l~< s) (4.2a) 

e~o(t)=eok(t) = --kCk(t)[1 + (t--  1) M~2~)(t)] (1 <~k<~s) (4.2b) 

eoo(t) = M~s)(t)[1 + ( t -  1) M~s)(t)] (4.2c) 

In (4.2) I introduced the partial moments M~s)(t) =_ Zsk = ~ k~Ck(t). Note that 
M~S)(t) has a finite peak near the gel point t c. This peak is higher for larger 
values of s. 

A subtle point that becomes relevant in this section is the initial 
condition for Eq. (2.42). In the present case, the condition formulated in 
(2.42b) is too weak. This may be seen as follows. At the initial time t = 0  
the fluctuations are delta correlated, i.e., the spatial profile of Eke(r, t) 
reduces to a delta function as t+ 0. This information is lost in (2.38) if it so 
happens that the prefactor of 6(r) vanishes for t = 0; hence, it is always lost 
for k = 0 or l = 0. This defect may be cured by imposing the stronger initial 
condition 

E k , ( r , t ) / f  d r E k , ( r , t ) ~ 5 ( r )  (t$O) (4.3a) 

or, equivalently, 

Fk,(q, t ) /ekz( t )~ 1 (t+0) (4.3b) 

where ekt(t) is given in (4.2). 
The solution of Eq. (2.42a) for Fkz(q, t), with the initial condition 

(4.3b), r=s ,  and Dk as in (4.1), has a very simple form for all tt>0, namely 

Fk,(q, t )=  -k lck( t )  c , ( t )z l (q ,  t) (l <~k,l<<.s) (4.4a) 

Fko(q, t )=  ek0(t)z2(q, t) (1 <<.k<~s) (4.4b) 

Foo(q, t) = eoo(t) z3(q, t) (4.4c) 

Thus, the k, l and the q dependences in Fkt separate, as was found for the 
pre-gel solution (3.3a) in Section 3. Note that the k, l dependence of F~t is 
the same as that of the nonspatial cumulants ekl in (4.2). The form of 
zi(q, t) ( i=  1, 2, 3) for q = 0 follows immediately from (4.2) as (all t >~ 0) 

ZI(0, t )=  1 - t 
(4.5) 

Z2(0, t) = Z3(0, t )  : 1 
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Furthermore, the initial condition for zi(q, t) is 

g,(q, 0 ) =  1 (i = 1, 2, 3) (4.6) 

This follows directly from Eq. (4.3). 
To verify that (4.4) represents a solution of the kinetic equation 

(2.42a), substitute (4.4) into (2.42a) and find that (4.4) is indeed the 
solution, provided that the functions )~i(q, t) satisfy the following coupled 
differential equations: 

~(q ,  t )=  l - 2 [ 1  + ( t -  1 ) M ~ ( t ) ]  )~2- 2 [M(2S)(t) + Dq 2] Z1 (4.7a) 

)~2(q, t ) =  M(2")(t) Qoo(t)[z1 + ( t -  1)Z2]/eoo(t) 

+ (Z3 - Z2) Mg)(t) - Dq2z: (4.7b) 

23(q, t) = -2Q00(t)(z 2-)~3)/M~s)(t) + (1 - z3) Qoo(t)/eoo(t) (4.7c) 

The matrix elements Qkr have been defined in (2.15c). Recall that 

1 ~ K~(i+j)2 tli+j_,ci(t) cj(t) + Co(t) M(3s)(t) 
Q~176 = -2 i,j=l (4.8) 

where Co(t) represents the mass of clusters larger than s. The derivation of 
(4.7) used the fact that the cumulants ekt(t) in (4.2) satisfy Eq. (2.42a) with 
q = 0. Furthermore, the explicit form of the matrix Akt was used in (2.14) to 
show that ~]~=1 kAokck = Qoo. Note that Eq. (4.7) has the structure of a 
linear, inhomogeneous, first-order differential equation for the vector 
x(q, t): 

0 
c3t x(q, t) = B(t) ;((q, t) + V(t) (4.9) 

where B(t) is a 3 x 3 matrix. The solution can formally be written as a time- 
ordered exponential (see ref. 5, Section XIV.7), but such expressions are not 
very transparent, and can be omitted here. Nevertheless, this result has two 
important consequences. First, the solution of (4.9) with the initial con- 
dition (4.6) is unique. Second, the solution is finite for all finite values of t. 

Before analyzing the detailed behavior of z(q, t) in (4 .7) , le t  us 
consider the density fluctuations in the model (4.1). From the definition 

p(r, t) = kuk(rl) + uo(rl lut(r2) + uo(r2 (4.10) 
k l l 1 
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it follows that the Fourier transform/3(q, t) of p(r, t) is given by 

t3(q, t )=  ~ kl(Fk, + 6kzck)+ 2 ~ keko + Foo 
k , l = l  k = l  

= M(z')(t)-zl(q, t)[M~S)(t)]2+ [z3(q, t ) -2z2(q,  t)] eoo(t) (4.11) 

This result is finite for all t ~> 0 due to the finiteness of x(q, t). This leads to 
my first conclusion: the divergence of/~(q, t) at tc in Section 3 is an artefact 
of the model (3.1). 

In the following I analyze the behavior of the functions zi(q, t) for 
various combinations of q and t. Four different limits will be studied: the 
limits of large and small wave vectors (q ~ oo and q - ,  0), the limit t ~ o% 
and, finally, the limit s -* oo. These limits are treated separately; the results 
are presented in Sections 4.1-4.4. From these results I calculate the upper 
critical dimension (Section 4.5). Section 4.6 formulates the conclusions. 

4.1. The L imi t  q -~  oo 

The behavior of zi(q, t) for q --* oo corresponds to correlations at short 
distances. Recall from (4.3) that, initially, the fluctuations are delta 
correlated, leading to the finite value )~i(oo, 0) = 1 in (4.6). For all t > 0 the 
delta functions in Z~(q, t) and z2(q, t) have broadened due to the diffusion 
terms in (4.7a), (4.7b). Hence, one expects that, for all t > 0 ,  Zl(Oo, t ) =  
Z2(Oo, t )=  0. No diffusion occurs for clusters of size k >  s (corresponding 
to X3)- Hence, one expects Z3(oo, t )>  0 for all t > 0. 

To show that these ideas lead to a consistent large-q solution, consider 
Eq. (4.7c) for X3(q, t). Elementary integration, with Z2(oo, t )=  0, yields 

where 

X3(Oo, t )=  1 + dt'I,(t, t') (4.12a) 

Is(t, t ' ) = 2 ~ e x p  - fcdt" \--Coo(t,,) 2 ~ } j  (4.12b) 

Since Qoo(t)> 0 for all t > 0, it can be inferred from (4.12) that )~3(oo, t )>  t 
for all t >  0, i.e., that local correlations between large clusters are more 
pronounced for t > 0 than they are at t = 0. Note that these correlations are 
finite: Z3(O% t )<  oo (all t <  oo). Let us calculate the large-q behavior of Zl 
and Z2. Formal integration of Eqs. (4.7b) and (4.7a) shows that for q ~ oo 

Z2(q, t) ~ Z3(o% t) M(z~)(t)/Dq 2 (q --. oo) (4.13a) 

zl(q, t )~ 1/2Dq 2 (4.t3b) 
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As expected, one finds that Z~ ~ 0 and Z2 ~ 0 as q ~ oo. The behavior of Z1 
and )~2, proportional to (Dq2) -1 as q-*oo, is not unusual in diffusive 
reactions: another example is the pre-gel solution (3.3b). 

4.2. The  Limit  q - * 0  

The behavior of :~(q, t) for q ~ 0 is of the form 

x,(q, t)=X~(0, t ) + q , ( t ) D q 2 +  ... (q--,O) (4.14) 

where )/i(0, t) is given in (4.5). Substitution of (4.14) into (4.7) yields three 
coupled differential equations for the coefficients r/i in (4.14), 

01(t) = 2 ( t -  1 ) -  211 + ( t -  1) Mr s)] t /2-  2M(J~rll (4.15a) 

02(t) = - 1  + (QooM(zS)/eoo) tl 1 

+ [(t - 1) Qoo/eoo - 1 ] M~')tl2 + M~')tl3 (4.15b) 

03(t) = -2(Qoo/M(2 s)) th + (2Qoo/M~ ~) - Qoo/eoo) ,3 (4.15c) 

The equations are to be solved with the initial condition t / i (0)=0 
( i=  I, 2, 3). 

4.3. The Limit  t - .  oo 

To obtain a first impression of the long-time behavior of xi(q, t), let us 
take the limit t ~ ~ in the results of the previous sections for large and 
small values of q. I discuss the results for q ~ oo first, and then those for 
q ~ 0 .  

Consider the large-q result (4.12) for )c3(q, t). From the explicit form 
(1.13) of ck(t) one can infer that M(J)(t),,, e - '  as t---, oo. Similarly, it follows 
from (4.8) and (4.2c) that Qoo( t )~e  -~ and eoo( t )~e  ' as t ~  oo. As an 
immediate consequence, one finds that, for t ~  ~ ,  I,(t, t') increases 
exponentially as a function of t, i.e., 

Is(t, t ' )~e tJ s ( t  ') (t--* oo) (4.16a) 

with Js(t) defined a s  

J , ( t ) = z  ,---=:----exp - t +  dt' 2 Qoo(t') Qoo(t') 1 
M~')(t ') eoo(t') 

(4.16b) 
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Note that J s ( t ) ~ 2 e  - t  as t ~  m. From (4.12a) and (4.13) it now follows 
that, in the combined limit, first q ---, ~ ,  then t --, m, 

Z3(~, t) ~ % e  t (4.17a) 

z2(q, t) ~ ~s /Dq  2 (q --* m ;  t ~ m ) (4.17b) 

zl(q, t ) ~  1 /2Dq:  (4.17c) 

where the constant ~s is defined as ~s = ~ dr' Js(t ' ) .  
Next consider the small-q results (4.14) and (4.15) in Section4.2. 

Formal integration of Eq. (4.15c) yields for the coefficient t/3(t ) in Z3(q, t) 

qs( t )=  - dr' ~/2(t') Is(t, t ')  (4.18) 

The large-time behavior of q3(t) is, due to (4.16a), given by 

r/3(t ) ~/~se t (t ~ m) (4.19a) 

where the constant/~s is defined as 

~ , -  - dt '  rl2(t' ) J , ( t ' )  (4.19b) 

This result for t/3(t ) can now be used to determine the asymptotic behavior 
of t/~(t) and t/2(t) as t--, m. From (4.15a), (4.15b) one readily deduces that 

ql(t) ~ (2 - Ps)t  2 (4.20a) 
(t-, m) 

q2(t) ~ (/~s- 1)t (4.20b) 

Note that/~s in (4.19b) converges due to (4.20b). 
The previous results, valid for q ~ m and q ~ 0, respectively, can now 

be used to study the large-time behavior of z~(q, t) at a fixed, positive value 
of q (0 < q < m). I consider z3(q, t) first, and then Z2 and Z~. 

I start with the observation that, qualitatively, z3(q, t) has the same 
structure at large and at small q, namely 

x 3 ( q , t ) , , ~ l + 7 ~ ( q ) e '  ( t - * D )  (4.21a) 

where 7~(q) ~ % as q ~ m, and 7s(q) ~ ~ D q  2 as q --* 0. Hence, I take (4.21) 
as an Ansatz for the large-time behavior for general values of q. Formal 
integration of (4.7c) shows, with the use of (4.16), that this Ansatz is 
consistent and, moreover, that 7,(q) can be expressed in terms of )~2(q, t), as 
follows: 

y~(q) = dt'  Js(t ')[1 - Z2(q, t ' )]  (4.21b) 
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The convergence of the integral on the right-hand side imposes a restriction 
on Z2 that will be verified below. 

Next consider z2(q, t) and z~(q, t) as t ---} ~ .  The method used to study 
the large-time behavior is the same in both cases. We start from (4.7a) or 
(4.7b), perform a formal integration, and analyze the result for large values 
of t. For x2(q, t) one finds that 

Zz(q, t),,~ 1 + [Ts(q)/Dq 2 -  1](1 - e  -Dq2') (t ~ ~ )  (4.22) 

while zl(q, t) can be expressed in terms of z2(q, t) as follows: 

zl(q, t ) ~ f o d t '  [1 - 2z2(q, t ')] e -2Dq2(' '') ( t ~  ~ )  (4.23) 

These results are valid for general q values (0 ~< q < ~ ). Note that 7,(q) in 
(4.21b) converges due to (4.22), and that (4.22) and (4.23) reduce to the 
results of Sections 4.1 and 4.2 in the limit of large or small q. 

Equations (4.23) and (4.22) in combination with (4.21b) are still quite 
complicated. A limit in which these expressions for Z1 and Zz become very 
simple is the combined limit t--+ ~ and q ~ 0 with the new variable 
x =-Dq2t kept fixed. In this limit one finds that 

Zz(q, t) ~ ~o2(x) (4.24a) 
(x - DqZt) 

z~(q, t) ~ -trp~(x) (4.24b) 

where opt(x) and g02(x) are given by 

q~2(x) -/~s + (1-/~s) e-X (4.24c) 

f0 rp~(x) - x i dy [2go2(y) - 1 ] e 2(y-x) (4.24d) 

If desired, rPl(X ) can easily be calculated explicitly. The physical relevance 
of the combined limit t ~ ~ and q-~ 0, with Dq2t fixed is that small q 
values, of the order of (Dt) 1/2, correspond to large distances, with Ir[ of 
the order of (Dt)l/2. Such distances are particularly interesting, since (Dt) m 
is the typical distance over which the correlations can spread in time t. 
Recall that the diffusion constants in (4.7a) and (4.7b) are 2D and D, 
respectively. 

The expressions (4.24) for the Fourier transforms xz(q, t) and Zl(q, t) 
can readily be inverted with the use of (3.6). The results are respectively 
given by 

G2(r, t) =/~sf(r) + (1 -/~s) g(r; 2Dt) (4.25a) 

fo Gl(r, t ) =  - dt' [(2/~s-1) g(r;4D(t-- t ' ) )  

+ 2(1 -/~s) g(r; 2D(3 t -2 t ' ) ) ]  (4:25b) 
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Note that, in this combined limit, G2(r , t) and G~(r, t) take the form of a 
superposition of Gaussians. Further note that G2(r, t) dr and t-~G~(r, t) dr 
can be expressed in terms of the single new variable R - r/(Dt) ~/2. 

4.4 .  T h e  L i m i t  s - *  oo 

I comment on the behavior of the fluctuations in the limit s ~ ~ ,  
where the model (4.1) reduces to the pre-gel model (3.1). As I shall show 
below, the results are dramatically different in the pre- and in the post-gel 
stage. 

Let us start with the results for t <  tc= 1. In this case M~S)(t)-~ 
(1 - 0  -1 as s--* ~ ,  due to (3.11), so that Eq. (4.7a) for Zl(q, t) reduces to 

~l(q, t) = 1 - 2[-(1 - t) -1 + Dq 2 ] )~ (4.26) 

The solution is gl(q, t ) =  ( 1 - t )  z(q, t), where z(q, t) is the pre-gel result 
(3.3b). Comparison of the expressions (4.4a) and (3.3a) for Fkt(q, t) shows 
that both are identical, i.e., we recover the results of Section 3 if we take the 
limit s ~ ~ in the results of this section. Strictly speaking, this argument is 
complete only if we show that Z2(q, t) and ;~3(q, t) in (4.7) are well behaved 
as s ~ or. In fact, one can show, with the use of the explicit form (1.13) of 
ck(t), that z2(q, t)--* z(q, t) and Z3(q, t ) ~  1 if s ~ ~ .  This justifies the 
derivation of (4.26). 

To obtain an impression of the behavior as s ~ ~ in the post-gel 
stage, it suffices to consider the gel-gel correlations, represented by z3(q, t). 
For simplicity, let us consider only the behavior of X3 as q ~ ~ ,  which 
corresponds to correlations at extremely small distances. The large-q 
behavior of X3 is given in (4.12). From (4.8) it follows for all t > 1 that 
Qoo(t) ~ g(t) M3(t ) as s --+ ~ ,  where g(t) is the gel fraction. Furthermore, 
M~)(t) ~ Me(t) as s ~ oo. The behavior of Qoo(t) and M2(t ) for t$1 is 
given by (16) 

Q o o ( t ) ~ 2 ( t - 1 ) - 2 ;  M z ( t ) , , ~ ( t - 1 )  ~ ( t$1)  (4.27) 

Insertion of (4.27) into (4.12) immediately shows that Z3(~, t) diverges for 
a l l t > l  a s s ~ :  

f 
t 

X3(ct3, t) ~> dt ' I~( t , t ' ) - -*~ ( s ~ )  (4.28) 
1 

This may be seen from Eq. (4.12b), which implies that/~(t,  t') oz ( t ' -  1) 4 
as t '$1. Hence the integral in (4.28) diverges at its lower boundary. The 
divergence of the gel-gel fluctuations in (4.28) leads to the same conclusion 
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as was found below Eq. (3.15): for the model (3.1), corresponding to s = oo, 
the method of this paper breaks down at the gel point t~. Note, however, 
that such problems do not occur for any description with s < oo. 

4.5. Calculation of d~ 

The previous large-time results for the spatial fluctuations in the 
post-gel stage (Section4.3) can be used to calculate the upper critical 
dimension d, in the model Ko=ij ,  with D k given by (4.1). The upper 
critical dimension is the dimension above which a mean-field treatment is 
allowed, i.e., above which the macroscopic law is correctly given by the rate 
equations (1.10). 

The fundamental equation in the argument is (2.9a), which gives an 
exact description of the time evolution of the averages ( m ~ ( t ) ) ,  with k = 
1 ..... r. This equation may be written in the form 

8 
8t (mk~)R = Sk(t) + F~(t) (k = 1 ..... r) (4.29) 

where S~(t) represents the right-hand side of Eq. (2.11a), and Fk(t) is the 
correction due to fluctuations: 

F~(t)= --(2v) -1 ~. K~(6i~ +c~jk--c~i+j,k)[mi~mj~)) 
z j = t  

- v - l k [ m ~ m o ~ ) )  (4.30) 

The cumulant [-- .))  has been defined in (2.12b). 
The mean field assumption is that the contributions Fk in (4.29) due to 

fluctuations are negligibly small, i.e., that 

R~(t) =_ Fk(t)/Sk(t) ,,~ 1 (4.31) 

If this condition is fulfilled, then the macroscopic law is given by (2.11a). 
The condition (4.3l) is clearly fulfilled in any dimension at short times, 
because the fast diffusion (D~> 1) smoothes out possible fluctuations. 
Whether (4.31) is also correct at large times depends on the space dimen- 
sion d. One finds that Rk(oo)~ 1 above some critical dimension de, and 
R~(oo) = oe if d<~dc. The calculation of dc is the subject of this section. 

To determine the value of de, start from the definition (4.31) of Rk and 
calculate R~ within the mean field approximation, assuming that (1.10) 
holds. As stated above, this is allowed in any dimension at short times, and 
for all t > 0 if d >  de. From the explicit form (1.13) of ek(t) one finds that 
the large-time behavior of Sk(t) is given by 

Sk(t) ~ --vkck(t) (t ~ oo ) (4.32) 

822/54/1-2-17 
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Similarly, the dominant terms as t ~ oo in (4.30) follow from (4.4) as 

Fk(t) ~ --v lk[mk~mo~)) ~ - k  f~ dr Eko(r, t) (4.33) 

where the r integral is calculated over a cell of size v, centered around the 
origin. Combination of Eqs. (4.33), (4.32), and (4.31) then yields for the 
large-time behavior of Rk(t) 

Rk(t) ".~ v -1 f, dr Eko(r, t)/cx(t) 

- v - l k  fo dr G2(r, t) (4.34) 

where G2(r, t) is the inverse Fourier transform of X2(q, t) in (4.4b). 
The spatial profile G2(r, t) of the sol-gel correlations may be deter- 

mined from Eq. (4.22). From (4.17b) we know that for small distances, or 
large q values, 7s (q )~  as, so that z2(q, t) in (4.22) may be written as 

z2(q, t) ... e-Dq2t .3ff as dt' e -Dq2t' 

This equation may readily be inverted to yield 

(4.35) 

Gz(r, t ) ~ g ( r ; 2 D t ) + a ,  dt' g(r;2Dt') (4.36) 

where g(r; a 2) is the d-dimensional Gaussian distribution (3.6a). With the 
use of (4.36) and (4.34) it is now easy to show that R~(t) remains finite for 
all t > 0  if d > 2 :  

Rk(t) oc -askv(Z-d)/dD-1 (t--* ~ ; d > 2 )  (4.37a) 

while R,(t) diverges for d~< 2: 

Rk(t) oc -a skD-11og  t ( t ~  o o ; d = 2 )  (4.37b) 

Rk(t) oc -ask( t /D)  ~/2 (t ~ oo; d =  1) (4.37c) 

The unspecified numerical prefactors on the right in (4.37a)-(4.37c) are all 
of the order of unity. 

From (4.37) it immediately follows that the upper critical dimension is 
dc = 2, since Rk(t ) diverges if d~< 2 and remains finite (and small) if d >  2. 
The fact that R~(oo) is small for d > 2 follows from the assumptions v >> 1 
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and D >> 1. As a remark I add that above dc was calculated from the kinetic 
equation (2.%) for ( m k ( t ) ) ,  with k =  1,..., r. One could equally well have 
started from Eq. (2.9b) for the mass (mo( t ) ) ,  contained in clusters larger 
than r. In this case one finds of course the same result, dc = 2, independent 
of the reactant under consideration. 

4.6. C o n c l u s i o n s  

The main results and conclusions are as follows. 

1. The divergence of the density fluctuations at tc found in Section 3 
is an artefact of the model (3.1) with s =  ~ .  This divergence does not occur 
in the model (4.1). 

2. Section 4.4, which considered the limit s ~  ~ ,  shows that the 
results for the model (4.1) depend sensitively on the value of s, at least in 
the post-gel stage. In the pre-gel stage the results are relatively insensitive 
to the choice ofs. 

3. A physically interesting limit is the limit t -~ ~ and q ~ 0 with the 
combination x = DqZt fixed. In this case the results are very simple. For 
l<~k, l<~s one finds that Fkt(q, t)--~ekl(t)~ol(x); for l = 0  it follows that 
Fk0(q, t) ~ eko(t) ~P2(X). The form of ~pl(x) and ~p2(x) is given in (4.24). 

4. The large-time behavior of the gel-gel correlations is given by 
Foo(q, t) ~ 7s(q) as t ~ ~ .  Hence the covariance Eoo(r, t) approaches a con- 
stant spatial profile at large times. From the fact that 7s(q) ~ ~, as q ~ ~ it 
follows that the variance of the gel mass contained in small subvolumes V0 
is given by cr s Vo at t ~ ~ .  If the gel mass were distributed independently 
over the subvolumes V0 according to Poisson statistics, one would find Vo 
for the variance. The factor ~s therefore gives the deviation from the 
Poisson result due to the combined influence of reactions and diffusion. 
Note that a s ~  ~ as s ~  ~ .  

5. In many results, such as those of conclusion 3 and 4, the s 
dependence enters only through numerical prefactors like ~ and fls. 
Hence, different values of s in (4.1) lead to a different magnitude of the 
fluctuations, and not to qualitatively different behavior. Recall that as and 
fl, become large for large values ors. 

6. In Section 4.5 it was shown that the upper critical dimension in 
this model is d c = 2. However, from (4.37b) and (4.37c) it follows that the 
mean field assumption (4.31) is correct also below the upper critical dimen- 
sion (i.e., for d~< 2), provided that one restricts oneself to times that are not 
too large: t < tD, where t D = exp(D/kcq) if d =  2, and tD = D/(kc~,) 2 if d = 1. 
Since it was assumed that the aggregation process is reaction limited 
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(D >> 1), it can be inferred that the mean field results are also applicable in 
d = 2 for any practical purpose, and in d = 1 at least for a considerable time 
interval. 

7. On the other hand, it is also manifest in (4.37a) that the 
fluctuations may become large even for d > 2 :  ( i) if  ~s is large (which 
happens if large clusters are very mobile: s>> 1); (ii)if the cluster size k is 
large; in this case the fluctuations become large because of the large 
reactivity (short lifetime) of a k-mer; (iii)if the diffusion constant D is 
small, which corresponds to diffusion-limited aggregation. This limit is not 
considered in this paper. 

5. D I S C U S S I O N  

In this paper I studied the spatial fluctuations in coagulating systems 
with rate constants Ko.= O" and diffusion constants D k. The starting point 
was a master equation for a cell model, where clusters react within each 
cell, and jump between cells. From the master equation I derived 
approximate kinetic equations for the average occupation numbers (con- 
centrations) and for the fluctuations about those averages (equal-time and 
two-time correlation functions). The basic assumption underlying the 
derivation of these equations is that clusters diffuse over large distances 
(much larger than the cell diameter) before they finally react. In this case 
one can apply the 12-expansion within each cell, assuming that the cells are 
large (i.e., contain many clusters). Furthermore, one can transform from 
the cell picture to a continuum formulation, replacing the jump constants 
by a diffusion operator. 

I start the discussion with some comments on the method of this paper. 
For this purpose I focus on the basic assumption, that clusters diffuse over 
large distances before they finally react. The average (RMS) distance l(k) 
traveled by a k-met during its lifetime is given by 

l(k) = (2O~zk) 1/2 (5.1) 

where D k is the diffusion coefficient of a k-mer and zk is its average lifetime. 
In reaction-diffusion processes, the distance l =  (2Dz) 1/2 defines an impor- 
tant length scale. ~2~ It is known as the Kuramoto length. ~5) From (5.1) it 
follows immediately that our basic approximation, that l(k) is large com- 
pared to the cell size, cannot be correct for very large clusters, since l(k) 
vanishes as k ~ ~ .  Two effects tend to decrease t(k). First, in physical 
systems one expects that D k ~ 0 as k--, ~ .  Second, for the rate constants 
Kij = / j  considered in this paper, one has Zk ~ 0 as k ~ oe. The latter fact 
may not b e s o  obvious, and will be discussed next. 

To calculate rk, consider a cluster of size k, brought into the system at 
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some time to/> 0. The probability that the k-mer has not yet reacted at the 
(later) time t >  to is denoted by Pk(t). For a spatially uniform initial dis- 
tribution, this probability satisfies a simple master equation. The transition 
rates for a reaction in cell c~ are 

Tk(t) = v - j  ~, Kkj(mj~ -- 6kj) (5.2) 
J 

or, to leading order in the cell size v, Tk(t ) = k. I used that, on the average, 
the mass density is equal to unity for all t > 0. The master equation for 
P~(t) is 

P~(t) = - k P k ( t  ) (5.3) 

The solution has the form P k ( t ) = e x p [ - - k ( t - - t o ) ]  (all t> to ) .  As a 
consequence, one finds that zk is, for all times to/> 0, given by 

~ = dt ( t -  to) -bk(t) = 1/k (5.4) 
o 

Hence z k vanishes as k -*  ~ .  Clearly, the physical explanation is that large 
clusters are very reactive, implying that their average lifetime is very short. 

The Kuramoto length now follows from (5.1) and (5.4) as l (k )=  
(2D~/k) 1/2. From the fact that l ( k ) ~ O  as k ~ ,  I conclude that this 
method is inaccurate for clusters with a Kuramoto length smaller than the 
cell diameter: k ~ k D ,  with l(kD)--v lid. Fortunately, the contributions of 
such large clusters to the rate equations for the smaller clusters (k ~ kD) a r e  

exponentially small, of the order of ck~(t). Hence I conclude that, although 
large clusters are treated inaccurately in this method, the resulting error in 
the quantities of interest is negligibly small. 

Next I comment on the exactly soluble models discussed in Sections 3 
and 4. The diffusion constants corresponding to these models are Dk = D 
( k =  1,2,..) and D k = D  (l~<k~<s), D k = 0  (k >s ) ,  respectively. On one 
hand, these models are complementary, since large clusters are extremely 
mobile in the former and completely immobile in the latter model. On the 
other hand, the model of Section 4 reduces to that of Section 3 in the 
limit s ~ ~ .  Combination of both models thus yields some insight into 
the possible behavior of the spatial fluctuations in (reaction-limited) 
aggregation processes. 

In the model D k = D  ( k =  1, 2,...), large clusters are clearly much too 
mobile. The large mobility of large clusters is unimportant at short times, 
since in this case large clusters are scarce. Artefacts are to be expected only 
in the vicinity of the gel point. Examples of such artefacts are the divergence 
of the density fluctuations at t ~ t c and the vanishing width of the spatial 
profile G(r, t) in (3.7b). These results are not realistic: in the models of Sec- 
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tion 4 one does not find a divergence of the fluctuations or a contraction to 
a delta peak. Nevertheless, the model (3.1) reveals very clearly and 
explicitly the tendencies present also in the model (4.1). For this reason ! 
consider the results of the model (3.1) in some more detail. 

One of the more remarkable features of the model (3.!) is that the 
spatial profile of the fluctuations contracts to a delta function: 
G(r, t) --, 6(r) as t ~ t,,. In reaction-diffusion systems one would expect that 
the correlations spread out, i.e., that the width of G(r, t) increases, rather 
than decreases, in the course of time. The explanation of this paradox lies 
in the definition of the width of a distribution. Many different definitions 
are possible, and, as I shall show, lead to different results. For  definiteness, 
define the width of G(r, t) as 

(r)~= f dr lrl~+~ G(r, t) / f  dr lrl~ G(r, t) (5.5) 

and consider the behavior of ( r ) ~  for various choices of the parameter ~. 
Note that correlations at large distances are emphasized if the value of ~ is 
large. The use of Eq. (3.7b) for G(r, t) leads to the following results. The 
physically expected behavior, where ( r )~  increases as a function of time, is 
obtained if one chooses e > 2. In this case the value of ( r ) ~  at tc is finite, of 
the order of (Dtc) ~/2. For c~ ~< 2 one finds that ( r ) ~  --* 0 as t ~ t~. Thus, one 
arrives at the following physical picture. If one concentrates on large 
distances and chooses a large value of ~ (i.e., c~ > 2), then the correlations 
spread out, as expected, with a diffusion constant 2D. However, if one 
chooses c~<2, one emphasizes the short-range correlations whose 
amplitude diverges as t --, to. 

Now consider a second remarkable result of the model (3.1), namely 
the divergence of the density fluctuations at the gel point t c; I address two 
questions: (1)how can this divergence be understood intuitively, and 
(2) does it occur also for other models? The answer to the first question is 
simply that, due to their large mobility, large clusters contribute 
significantly to the fluctuations in the density. This effect becomes impor- 
tant in the vicinity of the gel point, where the number of large clusters is 
large. The answer to the second question is more technical, and will be 
discussed next. 

Consider in general a model with diffusion constants Dk. An equation 
for the (Fourier-transformed) density~lensity correlation function ~(q, t) 
can be obtained by multiplying Eq. (3.2a) with kl and summing over all k 
and l. The result is 

0 
r t) = - 2 q  2 ~ ijDiro( q, t) (5.6) 

i , j  
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Note that Eq. (5.6) is not a closed equation for t)(q, t) and that F~(q, t) is 
not known exactly. However, we are interested only in the behavior of 
/~(q, t) as t T to.. For this purpose it is possible to argue as follows. Assume 
that, for some ~ > 0 ,  D k ~ D k  ~ as k ~ o o .  For the model D ~ = D  it is 
found (see the Appendix) that F~(q, t) approaches a scaling form as t~ tc, 
independent of the details of the initial distribution. More precisely: in the 
scaling limit, Fu(q, t) ~ eo.(t ), where e~(t) is the factorial cumulant of the 
nonspatial problem. Note that the same scaling form leads to a consistent 
solution of Eq. (3.2) for general choices of Dk. Replacing F,j(q, t) on the 
right-hand side of (5.6) by e~(t) and approximating the sums by integrals 
shows that in the vicinity of t c 

~?t/5(q, t) oc D q 2 ( t c - t )  z~-I (tTt~; fl<�89 (5.7) 

while O~/~t ~ const if/~ > 1/2. The prefactor on the right in (5.7) is positive 
and of the order of unity. It follows immediately from (5.7) that the density 
correlations remain finite for all /3>0. For /~=0 one finds that t3(q, t) 
diverges as tT to, proportional to I ln( tc- t ) l ,  in agreement with (3.15). 

Another interesting feature of both the model (3.1) and the models of 
Section 4 is the role played by the Kuramoto length. In the literature (5'2~ 
the distance 1 traveled by a particle during its lifetime is identified as a 
statistically important length scale: in volumes much smaller than I d the 
fluctuations in the cluster size distribution obey Poisson statistics. On the 
other hand, if one considers a subsystem much larger than l a, the fluc- 
tuations are the same as for the well-stirred case. The results in this paper 
are somewhat different. In Section 3 it was found that, although each 
cluster size k has a different Kuramoto length l(k), defined in (5.1), there is, 
for all cluster sizes k, only one length that determines the boundary line 
between Poisson and well-stirred statistics. This length, denoted by/ ,  is the 
"width" of the function G(r, t) in (3.7b), where in this case "width" should 
be defined by 

frl <r G(r' t) dr --- 1 (5.8) 

Similarly, it was found in Section 4 that the spatial profile of the factorial 
cumulants Ekz(r , t) is described by a single function Gl(r, t) if we restrict 
ourselves to cluster sizes satisfying 1 <<,k, l<~s. I conclude that, in the 
present models, the statistics for a particular species is not determined by 
the Kuramoto length of that species, but rather by some "average" 
Kuramoto length in the system. 
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Next I comment on the significance of the nonspatial model (17"21) for 
reaction diffusion systems. In the nonspatial (or single-cell) model it is 
assumed that all pairs of i- and j-mers are equally likely to form a bond. 
The usual interpretation (5'6) is that either the system is "well-mixed" or dif- 
fusion occurs so fast that the clusters are able to traverse the entire system 
before they finally react. In reaction-diffusion systems of macroscopic size 
these possibilities are both somewhat unrealistic: diffusion is usually not 
that fast, and mixing with microscopic finesse would be more than 
miraculous. Here I want to point out that the results from the nonspatial 
model have in fact great significance for the reaction-diffusion problem, but 
for a different reason. This reason is that the nonspatial correlation 
functions occur in the reaction-diffusion problem as integrals over the 
(spatial) correlation functions, at least if the initial state of the system is 
spatially uniform. This fact is expressed by Eqs. (2.45) and (2.46) for the 
equal-time and the two-time correlation functions, respectively. This con- 
clusion is of course also true in general for any related reaction-diffusion 
problem. 

The new interpretation of the nonspatial results suggests a relatively 
simple way in which the present theory could be verified experimentally. 
The integrated (or nonspatial) correlation functions are in principle 
accessible in computer simulations. Hence one could try to extend the non- 
spatial fluctuation theory/1~'2~) to other fields, e.g., to percolation, ~22~ or to 
test it in simulations of cluster-cluster aggregation processes. (23) From a 
physical point of view, the outcome of such experiments would be very 
interesting. Similar remarks were made already in ref. 21. 

In this paper it is assumed throughout that the initial state of the 
system is spatially uniform. Here I comment on the possible influence of 
inhomogeneities in the initial state. First, if the inhomogeneities are large 
(of macroscopic size), one expects that they will partly fade out  in the 
course of time due to diffusion, but some reminiscences of the initial state 
will always be present near the gel point. This then leads to a spatial 
variation of the gel time to(r) that will also be of influence on the final state 
of the system (t = oo). 

Second, I discuss the important case where the inhomogeneities are 
small, of relative order v 1/2 in each cell of size v. In the notation of 
Section 2.1 this means that 

mk~(O) = VCk(O) + Vl/2~k~(O) (5.9a) 

where ~k~(0) is of the order of unity. This is precisely what one would 
expect for the spontaneous statistical fluctuations in the initial state, which 
are described by a multinomial (or, since v is small, Poisson) distribution. 
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In this case one finds that the average number of k-mers in cell ~ takes the 
form 

(mk~(t) ) = VCk(t ) + Vl/2 ( ~x~(t ) ) (5.9b) 

where (eke) satisfies the same linearized kinetic equation (2.18), (2.22) as 
Arnk~. Equation (5.9b) has the following consequences: 

(i) To dominant order in the Q-expansion one finds that 
(rnk~(t))  = vck(t ), so that the macroscopic law is still given by (1.10). 

(ii) The kinetic equations for the equal-time and two-time 
correlation functions are still given by (2.37), (2.40). 

(iii) The initial conditions, too, are the same as for the spatially 
uniform case. 

From this one can conclude that all results o f  this paper are valid also 
i f  the initial state contains statistical fluctuations, as in (5.9a). 

An extension of this paper in a different direction has already proved 
possible. Here ! considered only one special choice for the rate constants, 
namely K~ = 0. However, the method discussed in Section 2 is quite general 
and can also be applied for different choices for K U. I have found two other 
exactly soluble models, corresponding to the nongelling models K o. = 1 and 
K o. = i + Z Furthermore, I have obtained some qualitative results, including 
a scaling theory, for rate constants that are homogeneous functions of the 
cluster sizes i and Z These results for other models will be published 
elsewhere, s 

Finally, I highlight the main results. In this paper I presented a new 
kinetic model, describing reaction-limited aggregation, in which the spatial 
fluctuations can be calculated explicitly. The model under consideration is 
of special interest since it describes a phase transition (gelation), and the 
fluctuations can be studied in detail, both in the pre- and in the post-gel 
stage. Starting from the master equation (2.4), I showed that the 
macroscopic law is given by (1.8) for all t > 0 ,  and I derived kinetic 
equations for the equal-time and two-time correlation functions. These 
equations simplify drastically for spatially uniform initial states: in this case 
the macroscopic law is Smoluchowski's equation (1.10), and the correlation 
functions depend only on the distance r - -Jr  1 - r 2 [ .  

I considered two exactly soluble models. For the first model (Dk = D 
for all k), I calculated the two-time correlation functions for monodisperse 
initial conditions and the equal-time correlation functions for general initial 
conditions. The large mobility of large clusters leads to a divergence of the 
density fluctuations at the gel point tc, implying that, at t c, the method 
breaks down. In the second model, large clusters are immobile: D k = D  

5 See ref. 24 for  the resul ts  for  K 0 = 1 a n d  for  h o m o g e n e o u s  r a t e  cons t an t s .  
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( k = l ,  2,...,s), D k = 0  (k>s) .  I calculated the equal-time correlation 
functions for monodisperse initial conditions and found the following 
results. In this model the density fluctuations are finite at all times, in par- 
ticular at the gel point tc. The fluctuations in the post-gel stage depend sen- 
sitively on the choice of the diffusion constants, i.e., on the value of s. The 
explanation is that a large contribution to the fluctuations for t > tc comes 
from the neighborhood of the phase transition (t ~- to), where the number 
of large clusters is large. One further finds that the correlation functions 
assume a very simple form in the physically interesting limit t--* oo and the 
distance Irl--* oo with the ratio r2/Dt fixed. From the large-time results it 
follows that the upper critical dimension in this gelling model is dc = 2. 

Substitution of (A.1) into 
differential equation, 

A P P E N D I X  A 

This appendix is devoted to the behavior of the factorial cumulants 
Ekl(r, t) in (2.37) for general initial conditions Ekt(r, 0 ) =  --6~tck(O)6(r). 
First, in Section A.1, I give the exact solution of Eq. (3.2) for the Fourier 
transform Fkl(q, t) of Ekt(r, t). The result is formulated in terms of the 
generating function of Fkt(q, t). Next, in Section A.2, I give an explicit 
result for Ekt(r, t) for the special case of monodisperse initial conditions, 
i.e., Ck(0)=6kl. For general (nonmonodisperse) initial distributions, the 
generating function results are too complicated to yield explicit expressions 
for E~(r, t). However, one can calculate asymptotic expressions, valid at 
large cluster sizes (k, l--* oo), and in the scaling limit. These asymptotic 
results for Ekt(r, t) are given in Section A.3. 

The properties of the fluctuations can be calculated only after the 
macroscopic law has been solved. This is obvious from Eq. (3.2) for 
Fkt(q, t), where the concentrations ck(t) enter both in the linear and in the 
inhomogeneous part. For this reason I recall some of the most important 
properties of ck(t). The macroscopic law (1.10) may be solved in terms of 
the generating function f(x, t) of ck(t), which is defined as 

f(x, t)= ~ kek(t)e ~x (A.1) 
k = l  

(1.10) shows that f(x, t) satisfies a partial 

~f ~ f  
(1 f)2~x=O (A.2) N+ - 

which may be solved with the use of the method of characteristics. The 
result is 

f(x, t) = U(Xo) (A.3a) 
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where 

u ( x ) - f ( x ,  O) = ~ kG(O) e kx (a.3b) 
k=l 

and Xo(X, t) is defined as 

Xo(X, t) - x + tf(x, t) - t (A.3c) 

Below, we need also an expression for the partial derivative o f f (x ,  t) with 
respect to x: 

a /  
x u'(x~ (A.4) 

( , t ) =  1 

More details concerning G(t), o f f ( x ,  t), can be found in refs. 15 and 16 or 
in Appendix B of ref. 17. 

A.1. Solut ion of (3.2)  for General Initial Condit ions 

I shall solve Eq. (3.2) for F~l( q, t) in terms of the generating function 
H(x, y; q, t), which is defined as 

H(x, y; q, t) =- ~, klI'~z(q, t)(e kx - 1 )(e • - 1 ) (A.5) 
k,l 

Once H(x, y; q, t) is known, Fkt(q, t) may be calculated by inversion of 
(A.5). Formally, Fkt(q, t) may be written as a double contour integral in 
the complex plane6: 

(1_~2~ dw1 ~ dw2 
klFk,(q, t )=k2~zi j  j w ~ + l  jw~2+~H(x, y ;q , t )  (A.6) 

where w l - e  X and w 2 - e  y. The integration paths in (A.6) are closed 
contours, circling the origins of the complex wl and w2 planes once in the 
counterclockwise direction. The factorial cumulants Ekt(r, t) may then be 
calculated by inverse Fourier transformation of (A.6). 

To obtain an equation for the generating function H in (A.5), multiply 
(3.2) with kl(e k x -  1)(e • -  1), and sum over all k and L As the result, one 
finds that H satisfies the following linear partial differential equation: 

~H ~ H +  ~H 
~9---t- + [1 - f ( x ,  t)] ~ [-1 - f ( y ,  t)] -~y 

-~ --I~(X, t)--M2]f~(Y, t)--m2] 

+ -~x (x, t) + -~y (y, t) - 2Dq 2 H (A.7a) 

6 Throughout this appendix, i stands for the imaginary number x/-1. 
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where M2(t)= ~,k k%k(t) is the second moment of ck(t), and f (x,  t) is 
defined in (A.1). The initial condition for (A.7a) follows from (2.42b), 
(A.3b), and (A.5) as 

H(x, y; q, O) = u'(x) + u'(y) - u'(x + y) - u'(O) (a.7b) 

Note that, as a consequence of (A.7b), the boundary condition H =  0 at 
x = 0 or y = 0 is automatically fulfilled for all t < to. 

In order to solve Eq. (A.7), transform (for a fixed value of q) from the 
old variables (x, y, t) to new variables (z~, z2, t) defined as 

z 1 - f ( x ,  t); z 2 ----f(y, t) (A.Sa) 

The function H expressed in terms of these new variables, will be denoted 
as W, i.e., 

W(zl, z2; el, t)=-H(x, y; q, t) (A.Sb) 

For W, one finds a relatively simple differential equation if one uses 
Eq. (A.2) for f (x ,  t), namely 

at- 

( # f ( x ' t ) + a f  ) + -~x ~ (y' t ) -2Dq  2 W (A.9) 

The relation between #flax (or #f/#y) and the new variables (z~, z2, t) 
follows from (A.4), with x0 (or Yo) given by (A.3a), i.e., 

U(Xo)=Zl; u(yo)=Z2 (A.10) 

Note that ~f/#x and Of/Oy depend only on z~ and z2, and not explicitly on 
t. The initial condition for (A.9) is 

W(Z1, Z2; q, O) ~- H(xo, Yo; q, 0) 

=u'(xo)+u'(yo)-U'(Xo+ Yo)-u'(O) (A.11) 

as follows immediately from (A.8b), (A.10), and (A.7b). 
Equation (A.9), with Of/Ox and ~?f/Oy given by (A.4), may readily be 

integrated. The result is 

W(z~, z2; q, t) 

= {[1 - tu'(Xo)][1 - tu'(yo)]} -1 {W(z~, z2; q, O)e -z~ 

- [ 1 - t c u ' ( x o ) ] [ 1 - t ~ u ' ( y o ) ] f o d r ( t c - r  ) 2 e-2Oq2"-~} (A.12) 
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where Xo is given by (A.10), and the gel time tc = 1/u'(0). In combination 
with the initial condition (A.11), this gives an exact expression for 
W(Zl, z2; q, t) and hence, due to (A.8b), for the generating function H in 
(A.5). 

A.2. Monodisperse Initial Condit ions 

The generating function W(z~,z2;q, t) in (A.12) assumes a par- 
ticularly simple form if the initial distribution is monodisperse, i.e., if 
ck(0) = 6kl. In this case it follows from (A.11), in combination with (A.3b) 
and (A.10), that 

W(zl, z2; q, O) = - ( z l  - 1)(z2- 1) (A.13) 

Insertion of (A.13) into (A.12), where to= 1 for monodisperse initial 
conditions, shows that W takes the form 

W(zl, z2;q, t )=  - ( 1 -  t) -1 

with s t) defined as 

( Z  1 - -  I ) ( Z  2 - -  1 )  

(1 - tzl)(1 - t z2 )  
z(q, t) (A.14a) 

(A.14b) z(q, t ) ~ ( 1 -  t)e-2Dq2tI t + ~odZ (1 -  r ) 2 e2Dq2~] 

Insertion of (A.14a) into (A.6) immediately shows that the q dependence of 
Fk~(q, t) is completely contained in z(q, t). Furthermore, since ;~(0, t ) =  1, it 
follows from (2.45a) that F,t(q, t) must have the form 

(A.15) F~(q, t) = ekl(t ) z(q, t) 

where ekt(t) is the factorial cumulant (3.3c) of the nonspatial problem. It 
may readily be verified from (A.14) and (A.6), or simply by inserting (A.15) 
into (A.5), that Fkz(q, t) in (A.15) indeed leads to the form (A.14) for 
W(z 1, z2; q, t). Note that Eq. (A.15), which has been derived constructively 
here, is identical to the previous result (3.3). 

A.3. General Initial Condit ions 

For general initial conditions, the result (A.12) for W(zl, z2; q, t) can- 
not be inverted exactly. Nevertheless, one can obtain simple asymptotic 
results for Ekz(r, t) in various limits. Below, I consider first the limit of large 
cluster sizes (k, l ~ os ), and then the scaling limit. 
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Before deriving these asymptotic results, however, I consider 
Eq. (A.12) for W(Zl, z2; q, t) in some more detail. Even if this result for the 
generating function cannot be inverted explicitly, it follows from (A.12) 
that the structure of F~l(q, t) is given by 

F~t(q, t) = ~kl(t) e 2Dq2~ + flkt(t) fs dv ( to-  z)-2 e 2Dq2(t- ~) (A.16) 

where ctkt and fl~z can be represented as complex contour integrals due to 
(A.6). Inverse Fourier transformation of (A.16) then shows that Ekz(r, t) is 
a superposition of Gaussian distributions g(r; a 2) also for general initial 
conditions: 

Ekl(r, t) = ~kt(t) g(r; 4Dt) 

+ fik~(t) dr ( t c - r )  -z g(r;4D(t-v))  (A.17) 

The interpretation of Eq. (A.17) is the same as that of Eq. (3.7b) for 
monodisperse initial conditions. The first term represents correlations, 
already present in the initial distribution, that have been spreading during 
a time t, with diffusion constant 2D. The second term represents 
correlations, induced by the reactions at time ~, that have been spreading 
during the remaining time ( t -  ~). This shows that the spatial behavior for 
general and for monodisperse initial conditions is very similar. 

To study the (explicit) asymptotic behavior of Ekl(r, t) at large cluster 
sizes, it is convenient to rewrite Eq. (A.8), (A.12) as follows: 

(Of  (x, t ) -  Mz)(~-~Jy " (y, t ) - M 2 )  H(x, y; q, t) = a(Xo, Yo; q, t) ~x (A.18a) 

where Xo(X, t) is given in (A.3b), and a(x, y; q, t) is defined as 

a(x, y; q, t)-= 1 - tu'(O) ,1 - tu'(O) { O) e -zDq2t 
u'(x)-u'(O) H(x, y; q, 

-- [1--  tcu ' (x) ] [1- -  tcU'(y)] Jo dr ( t c - r ) - 2 e  -2Dq2(t ~) 

(A.18b) 

In the derivation of (A.18) I used the relation (A.4) between Of/Ox and 
Xo(X, t). The initial value H(x, y; q, 0) is given in (A.7b). 

The asymptotic behavior of Ekt(r , t) as k--* oe and 1--* oe may now be 
calculated along the lines of ref. 17, Section 4(ii). For the details see that 
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paper. The method for studying the behavior at large cluster sizes is the 
saddle point method. From ref. 17 one knows that the integrand in (A.6) has 
a saddle point at the point x = y - - x s ( t ) ,  with Xs(t) defined by 

xs(t) - x~ - tu(x~) + t (A.19a) 

u'(x~) ~ t - I  (A.19b) 

For large values of k and l, only (x, y) values close to this saddle point 
contribute to the integral in (A.6), implying that 

klFk,(q,t)~a(x~,X~o;q, t)(~----~ii) 2 

dWl dw2 
• J (y, t) 

~a(xSo, xSo;q,t)(kl)2 ck(t)ct(t ) ( k , l ~ )  (A.20) 

This result may readily be inverted to yield an asymptotic form for 
Ekt (r, t): 

E~t(r, t ) ~  ~(r, t) klck(t) ez(t) (k, l ~  ~ )  (A.21a) 

where e(r, t) follows from (A.18b), (A.19b), and (A.20) as 

~(r, t )=t2[2t  I - u ' ( 2 x S o ) - t c l  ] g(r; 4Dt) 

- (t~ - 02 dz ( t c -  r ) -2  g(r; 4 D ( t -  ~)) (A.21b) 

Thus, at large cluster sizes the r and (k, l) dependences of E~t(r, t) factorize. 
The spatial dependence ~(r, t) in (A.21b) has the form of a superposition of 
Gaussians. The factor klck(t)ct(t) in (A.21a) represents the nonspatial 
factorial cumulants e~l(t) [see Eq. (4.14) of ref. 173. 

Next I consider E~t(r, t) in the scaling limit (S), which is the limit 
where k, l ~ oo, and the average cluster size s(t) ~ o% with k/s(t) and l/s(t) 
fixed. The average cluster size is chosen as s(t)= M3(t)/M2(t), where Mn(t ) 
is the nth moment of ek(t), defined in (1.12). The present calculations are 
completely analogous to those in Section 4(iii) of ref. 17. 

We start from H(x, y;q,  t) in the form (A.18), and focus on the 
factor a(xo, Yo;q, t) in (A.18a). From ref. 17 one knows that Xo(X, t) 
vanishes in the scaling limit, proportional to - s ( t )  -1/2, and similarly 
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Yo oc-s(t)  i/2--+0. As a consequence, one may expand a(xo, Yo;q, t) in 
(A.18b) about x = y  = 0; one finds that, in the scaling limit, 

a(xo, Yo; q, t) 

+ \u--;~] fo dz ( t<-r) e 2Dq2(t--') (A.22) 

This result can be simplified further. In the scaling limit, where t T tc, the 
second term in [ . - . ]  diverges, so that the first term, proportional to 
exp(-2DqZt) ,  can be neglected. Furthermore, the main contribution to the 
second term comes from the region ~-~t, so that the factor 
exp[ -2Dq2( t - r ) ]  can be replaced by unity as tTt<.. Thus, we find the 
remarkably simple result that 

a(xo, Yo;q,t) s> - ( t < - t )  (A.23) 

i.e., in the scaling limit a(x o, Yo; q, t) becomes independent of the variables 
x, y, and q. 

As a consequence of (A.23), it follows from (A.18a) that 

' ~xx (x ,  t) - M 2 ( y ,  t) - M 2  ( A . 2 4 )  

and, hence, from (A.6) that 

Fkt(q, t) s - ( t~- t )k lc~( t )c l ( t )  (A.25) 

Comparison of Eq. (A.25) with the scaling form (4.19) in ref. 17 for ekt(t) 
shows that the right-hand side of (A.25) is identical to ekz(t ). Hence, 
Eq. (A.25) may alternatively be written as 

Fk,(q, t) s ek,(t) (A.26a) 

o r  

E~/(r, t) s ek/(t)f(r) (A.26b) 

I emphasize that the scaling limit applies to large clusters, where large 
means "of the order of the average cluster size s(t)." Thus Eq. (A.26b) 
shows that all correlations between large clusters are strictly local as t ~ to. 
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